Second Order Systems

RCLParallelSeries.png

The dimensionality of the coefficient of the first order term is frequency:

$\displaystyle \left[\frac{R}{L}\right]=\frac{[V][/[I]}{[VT]/[I]}=\frac{1}{[T]},...
...;\;\;
\left[\frac{1}{RC}\right]=\frac{[I]}{[V]}\frac{[V]}{[I][T]}=\frac{1}{[T]}$ (174)

The dimensionality of the coefficient of the constant terms is frequency squared:

$\displaystyle \left[\frac{1}{LC}\right]=\frac{1}{[VT]/[I]\;[IT]/[V]}=\frac{1}{[T]^2}$ (175)

In general, any 2nd-order LCCDE with input $x(t)$ and output $y(t)$ can be written in the canonical form

$\displaystyle y''(t)+2\zeta\omega_n\,y'(t)+\omega_n^2\, y(t)= x(t)$ (176)

in terms of the two parameters: Comparing the canonical form with two equations above we see that for both RLC series and parallel circuits:

$\displaystyle \omega_n=\frac{1}{\sqrt{LC}}$ (177)

and We also have:

$\displaystyle \zeta_p \zeta_s=\frac{1}{4},\;\;\;\;\;\zeta_p=\frac{1}{4\zeta_s},
\;\;\;\;\;\zeta_s=\frac{1}{4\zeta_p}$ (180)

Note the following dimensionalities:

$\displaystyle \left[\sqrt{\frac{L}{C}}\right]=\sqrt{\frac{[Henry]}{[Farad]}}
=\...
...nd]}{[Ampere]}\frac{[Volt]}{[second]\;[Ampere]}}
=\frac{[Volt]}{[Ampere]}=[Ohm]$ (181)

$\displaystyle \left[ \sqrt{LC} \right]=\sqrt{[Henry]\;[Farad]}
=\sqrt{\frac{[Volt]\;[second]}{[Ampere]}\frac{[Ampere]\;[second]}{[Volt]}}
=[second]$ (182)

We therefore see that $\zeta_s$ and $\zeta_p$ are unitless, and the dimension of $\omega_n=1/\sqrt{LC}$ is $1/[second]$ as frequency.



Subsections