- The RCL series circuit (left) with an input
and output
is described by the following equation:
![$\displaystyle v_R(t)+v_L(t)+v_C(t)=R\,i(t)+L\frac{di(t)}{dt}+\frac{1}{C}\int i(t) dt=v_s(t)$](img494.svg) |
(166) |
Taking derivative and dividing by
on both sides we get a 2nd-order
linear constant coefficient differential equation (LCCDE):
![$\displaystyle i''(t)+\frac{R}{L}\,i'(t)+\frac{1}{LC}\,i(t)=\frac{1}{L} v'_s(t)$](img495.svg) |
(167) |
Alternatively, as
, we have
![$\displaystyle v_R(t)=R\;i(t)=R\,C\frac{d\,v_C(t)}{dt},\;\;\;\;\;\;
v_L(t)=L\fra...
...t)=L\frac{d}{dt}\left[C\frac{d\,v_C(t)}{dt} \right]
=LC\frac{d^2\,v_C(t)}{dt^2}$](img497.svg) |
(168) |
the equation above can be written as a 2nd order ODE in terms of
:
![$\displaystyle v''_C(t)+\frac{R}{L} v'_C(t)+\frac{1}{LC}v_C(t)=\frac{1}{LC}v_s(t)$](img498.svg) |
(169) |
- The RCL parallel circuit (right) with input
and output
is described by the following equation:
![$\displaystyle i_R(t)+i_C(t)+i_L(t)=\frac{v(t)}{R}+C\frac{dv(t)}{dt}+\frac{1}{L}\int v(t)\;dt
=i_s(t)$](img499.svg) |
(170) |
Taking derivative and dividing by
on both sides we get a 2nd-order
LCCDE:
![$\displaystyle v''(t)+\frac{1}{RC}\,v'(t)+\frac{1}{LC}\,v(t)=\frac{1}{C}i'_s(t)$](img500.svg) |
(171) |
- Other RCL circuits (not pure series or parallel):
![$\displaystyle \frac{v_s-v}{R} = C\frac{dv}{dt}+\frac{1}{L} \int v\;dt,
\;\;\;\;...
...{dv}{dt},
\;\;\;\;\;
C\frac{d}{dt} (v_s-v) = \frac{v}{R}+\frac{1}{L} \int v\;dt$](img501.svg) |
(172) |
![$\displaystyle v''+\frac{1}{RC} v'+\frac{1}{LC}v=\frac{v'_s}{RC},
\;\;\;\;\;\;\;...
...1}{LC}v=\frac{1}{LC}v_s,
\;\;\;\;\;\;\;
v''+\frac{1}{RC} v'+\frac{1}{LC}v=v''_s$](img502.svg) |
(173) |
The dimensionality of the coefficient of the first order term is
frequency:
![$\displaystyle \left[\frac{R}{L}\right]=\frac{[V][/[I]}{[VT]/[I]}=\frac{1}{[T]},...
...;\;\;
\left[\frac{1}{RC}\right]=\frac{[I]}{[V]}\frac{[V]}{[I][T]}=\frac{1}{[T]}$](img503.svg) |
(174) |
The dimensionality of the coefficient of the constant terms is
frequency squared:
![$\displaystyle \left[\frac{1}{LC}\right]=\frac{1}{[VT]/[I]\;[IT]/[V]}=\frac{1}{[T]^2}$](img504.svg) |
(175) |
In general, any 2nd-order LCCDE with input
and output
can be written in the canonical form
![$\displaystyle y''(t)+2\zeta\omega_n\,y'(t)+\omega_n^2\, y(t)= x(t)$](img505.svg) |
(176) |
in terms of the two parameters:
- damping coefficient
(unitless)
- natural frequency
(frequency)
Comparing the canonical form with two equations above we see that
for both RLC series and parallel circuits:
![$\displaystyle \omega_n=\frac{1}{\sqrt{LC}}$](img508.svg) |
(177) |
and
- for RLC series circuit
i.e.![$\displaystyle \;\;\;\;\;
\zeta_s=\frac{R}{2}\sqrt{\frac{C}{L}}$](img510.svg) |
(178) |
- for RLC parallel circuit
i.e.![$\displaystyle \;\;\;\;\;
\zeta_p=\frac{1}{2R}\sqrt{\frac{L}{C}}$](img512.svg) |
(179) |
We also have:
![$\displaystyle \zeta_p \zeta_s=\frac{1}{4},\;\;\;\;\;\zeta_p=\frac{1}{4\zeta_s},
\;\;\;\;\;\zeta_s=\frac{1}{4\zeta_p}$](img513.svg) |
(180) |
Note the following dimensionalities:
![$\displaystyle \left[\sqrt{\frac{L}{C}}\right]=\sqrt{\frac{[Henry]}{[Farad]}}
=\...
...nd]}{[Ampere]}\frac{[Volt]}{[second]\;[Ampere]}}
=\frac{[Volt]}{[Ampere]}=[Ohm]$](img514.svg) |
(181) |
![$\displaystyle \left[ \sqrt{LC} \right]=\sqrt{[Henry]\;[Farad]}
=\sqrt{\frac{[Volt]\;[second]}{[Ampere]}\frac{[Ampere]\;[second]}{[Volt]}}
=[second]$](img515.svg) |
(182) |
We therefore see that
and
are unitless, and the
dimension of
is
as frequency.
Subsections