Complete Solution with Step Input

We next consider the complete solution (composed of both homogeneous and particular solutions) of the 2nd order DE

$\displaystyle y''(t)+2\zeta\omega_n y'(t)+\omega_n^2 y(t)=x(t)$ (232)

with a unit step $x(t)=u(t)$ input and zero initial conditions $y(0)=\dot{y}(0)=0$. As the input is a constant for $t>0$, we can assume the particular solution to be a constant $y_p(t)=C$ with zero derivatives $y'_p(t)=y''_p(t)=0$. Substituting these into the DE above, we get $y_p(t)=C=1/\omega_n^2$, i.e., the steady state solution is:

$\displaystyle y_{ss}(t)=y_p(t)=y(\infty)=\frac{1}{\omega_n^2}$ (233)

The complete response can be obtained as the sum of the homogeneous solution (same as that obtained previously) and particular solution, corresponding to the transient and steady state response, respectively:

$\displaystyle y(t)=y_h(t)+y_p(t)=C_1 e^{s_1t}+C_2 e^{s_2t}+\frac{1}{\omega_n^2}$ (234)

The two coefficients $C_1$ and $C_2$ can be obtained based on the two zero initial conditions:
$\displaystyle y(0)$ $\displaystyle =$ $\displaystyle y(t)\bigg\vert _{t=0}=C_1+C_2+\frac{1}{\omega_n^2}=0$  
$\displaystyle \dot{y}(0)$ $\displaystyle =$ $\displaystyle \dot{y}(t)\bigg\vert _{t=0}=C_1s_1+C_2s_2=0$ (235)

Solving these equations we get:

$\displaystyle C_1=\frac{s_2}{\omega_n^2(s_1-s_2)}=\frac{-s_2}{\omega_n^2(s_2-s_1)},
\;\;\;\;\;\;C_2=\frac{s_1}{\omega_n^2(s_2-s_1)}$ (236)

Now the complete solution becomes:

$\displaystyle y(t)=\frac{1}{\omega_n^2}\left[1-\left(\frac{s_2e^{s_1t}}{s_2-s_1...
...ht]
=\frac{1}{\omega_n^2}\left(1-\frac{s_2e^{s_1t}-s_1e^{s_2t}}{s_2-s_1}\right)$ (237)

Alternatively, the nonhomogeneous 2nd-order LCCODE given above can be converted into a 1st-order ODE system and solving which we obtain the same results, as shown here.

The two roots $s_1$ and $s_2$ take different forms depending on whether the discriminant $\Delta=4\omega_n^2(\zeta^2-1)$ is greater or smaller than 0, i.e., whether $\zeta$ is greater or smaller then 1. Here we only consider the case when $0 < \zeta < 1$, i.e., $\Delta<0$, for an under-damped second order system. The two roots are

$\displaystyle s_{1,2}=\omega_n \; (-\zeta\pm j\sqrt{1-\zeta^2})=-\zeta \omega_n\pm j\omega_d,
\;\;\;\;$and$\displaystyle \;\;\;\;s_2-s_1=-2j\omega_d$ (238)

where $\omega_d$ is the damped natural frequency:

$\displaystyle \omega_d=\omega_n\sqrt{1-\zeta^2}$ (239)

Finally the complete solution of the non-homogeneous DE is:
$\displaystyle y(t)$ $\displaystyle =$ $\displaystyle \frac{1}{\omega_n^2}\left[1-\left(\frac{s_2}{s_2-s_1}e^{s_1t}-\frac{s_1}{s_2-s_1}e^{s_2t}\right)\right]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\omega_n^2}\left[ 1-
\left(\frac{\zeta+j\sqrt{1-\zeta^2}...
...1-\zeta^2}}{2j\sqrt{1-\zeta^2}} e^{(-\zeta\omega_n-j\omega_d)t} \right) \right]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\omega_n^2}\left[ 1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\...
...j\omega_dt}
-\frac{\zeta-j\sqrt{1-\zeta^2}}{2j} e^{-j\omega_dt} \right) \right]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\omega_n^2}\left[ 1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\...
...rac{ e^{j\phi} e^{ j\omega_dt}-e^{-j\phi} e^{-j\omega_dt} }{2j} \right) \right]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\omega_n^2}\left[1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}
\sin(\omega_dt+\phi) \right]$ (240)

where

$\displaystyle \phi=\tan^{-1}\left( \frac{\sqrt{1-\zeta^2}}{\zeta} \right),
\;\;\;\;$and$\displaystyle \;\;\;\;
\sin \phi=\sqrt{1-\zeta^2},\;\;\;\;\cos \phi=\zeta$ (241)

zetaphi.png

The step response $y(t)$ can be characterized by two parameters:

In particular, if $R=0$ and therefore $\zeta=0$, we have

$\displaystyle y(t)=\frac{1}{\omega_n^2}\left[1-\sin(\omega_n t+\pi/2)\right]
=\frac{1}{\omega_n^2}\left[1-\cos(\omega_n t)\right]$ (251)

The plots below shows an example with $f_n=1, \omega_n=2\pi$. Note the critical damped case when $\zeta=1$. An overshoot will occur for any $\zeta<1$.

The step response is plotted below. Note that $y(0)=0$ and $\dot{y}(0)=0$.

secondstep.png

secondstep1.png

Example

Consider the response $y(t)=v_C(t)$ of an undamped 2nd order RCL system.