The homogeneous solution of the 2nd order DE can be found
by solving the homogeneous equation:
![$\displaystyle y''(t)+2\zeta\omega_n y'(t)+\omega_n^2 y(t)=x(t)=0$](img602.svg) |
(209) |
where the right hand side of the DE for the input
is
zero. Substituting the assumed solution
and its
derivatives
into
the DE we get
![$\displaystyle (s^2+2\zeta\omega_n s+\omega_n^2)Ae^{st}=0$](img606.svg) |
(210) |
As we are not interested in a trivial solution,
, and
we get an algebraic equation
![$\displaystyle s^2+2\zeta\omega_n s+\omega_n^2=0$](img608.svg) |
(211) |
Solving this quadratic equation we get its two roots, the two
eigenvalues of
:
![$\displaystyle s_{1,2}=\left\{\begin{array}{ll}
\left(-\zeta\pm\sqrt{\zeta^2-1}\...
...^2}\right)\omega_n=\omega_n e^{\mp j\phi}
&\vert\zeta\vert< 1\end{array}\right.$](img610.svg) |
(212) |
where
![$\displaystyle \phi=\tan^{-1}\left(\frac{\sqrt{1-\zeta^2}}{\zeta}\right)$](img611.svg) |
(213) |
These two roots
are either two real numbers or a pair
complex conjugate numbers, depending on whether its discriminant
is greater and smaller then 0:
![$\displaystyle \Delta=(2\zeta\omega_n)^2-4\omega_n^2=4\omega_n^2(\zeta^2-1)
\lef...
...y}{ll}\ge 0 & \vert\zeta\vert\ge 1\\ < 0 & \vert\zeta\vert< 1\end{array}\right.$](img613.svg) |
(214) |
For a constant
and a variable
that changes
from
to
, the two roots
(red) and
(blue) can be represented as the root locus on the complex plane.
In particular, for the RCL circuit with all
,
, and
values
non-negative, we have
, i.e., we only need to consider the
root locus on the left side of the complex plain.
Given the two roots
and
, we can write the homogeneous
solution as
![$\displaystyle y_h(t)=C_1 e^{s_1t}+C_2 e^{s_2t}$](img619.svg) |
(215) |
where the two coefficients
and
can be found based on the
two initial conditions
and
. If we assume
but
, then we get
Solving these we get
![$\displaystyle C_1=\frac{s_2}{s_2-s_1} y_0,\;\;\;\;\;\;\;\;C_2=\frac{s_1}{s_1-s_2} y_0$](img630.svg) |
(217) |
and the homogeneous solution becomes:
![$\displaystyle y_h(t)=y_0 \left[ \frac{s_2 e^{s_1t}}{s_2-s_1}-\frac{s_1 e^{s_2t}}{s_2-s_1} \right]
=\frac{y_0}{s_2-s_1} (s_2 e^{s_1t}-s_1 e^{s_2t})$](img631.svg) |
(218) |
Alternatively, the 2nd-order LCCODE in canonical form given above can
also be solved if it is coverted into a 1st-order ODE system, as
shown here.
The solution takes different forms depending on the value of the damping
coefficient
.
- Over-damped system (
)
This is a sum of two exponentially decaying terms, without any overshoot
or oscillation. Note that when
,
.
- Critically damped system (
)
Now we have
![$\displaystyle s_1=s_2=-\omega_n=s$](img638.svg) |
(220) |
and the homogeneous solution takes following form:
Applying the initial conditions to this response we get
Solving this we get if
:
![$\displaystyle C_1=y_0, \;\;\;\;\;\;\;C_2=-sy_0=\omega_ny_0$](img645.svg) |
(223) |
and the response is
![$\displaystyle y_h(t)=C_1 e^{st}+C_2 t e^{st}=y_0\left[ e^{-\omega_nt}+\omega_n t e^{-\omega_nt}\right]$](img646.svg) |
(224) |
Again, there is no overshoot or oscillation.
- Under-damped system (
)
and![$\displaystyle \;\;\;\;
s_1-s_2=2j\omega_d$](img649.svg) |
(225) |
where
is the damped natural frequency defined as:
![$\displaystyle \omega_d=\omega_n\sqrt{1-\zeta^2}$](img651.svg) |
(226) |
The response is
Here we have defined:
![$\displaystyle \phi=\tan^{-1}\left( \frac{\sqrt{1-\zeta^2}}{\zeta} \right),\;\;\...
...
\zeta+j\sqrt{1-\zeta^2}=e^{j\phi},\;\;\;\;\;\zeta-j\sqrt{1-\zeta^2}=e^{-j\phi}$](img654.svg) |
(228) |
- Undamped system (
and
)
![$\displaystyle s_1=j\omega_n,\;\;\;\;\;\;s_2=-j\omega_n$](img656.svg) |
(229) |
![$\displaystyle y_h(t)=y_0 \left[ \frac{s_2 e^{s_1t}}{s_2-s_1}+\frac{s_1 e^{s_2t}...
...ght]
=y_0\left(\frac{e^{j\omega_n}+e^{-j\omega_n}}{2}\right)=y_0\cos(\omega_nt)$](img657.svg) |
(230) |
This result can also be obtained from the previous case:
![$\displaystyle \lim_{\zeta\leftarrow 0} \left(y_0\frac{e^{-\zeta\omega_nt}}{\sqr...
...in(\omega_dt+\phi) \right)
=y_0\sin(\omega_nt+\frac{\pi}{2})=y_0\cos(\omega_nt)$](img658.svg) |
(231) |
The homogeneous responses of these four cases are plotted below. Note that in all cases,
and
.