next up previous
Next: About this document ...

The canonical 2nd-order LCCODE

\begin{displaymath}
y''(t)+2\zeta\omega_n y(t)+\omega_n^2 y(t)=x(t)
\end{displaymath}

caan be converted into a 1st-order ODE system containing two 1st-order LCCODEs (see here):

\begin{displaymath}
{\bf y}'=\left[\begin{array}{c}y_1' y_2'\end{array}\right]...
...t[\begin{array}{c}0 x(t)\end{array}\right]
={\bf Ay}+{\bf x}
\end{displaymath}

The characteristic equation of the coefficient matrix ${\bf A}$ is

\begin{displaymath}
\det(\lambda{\bf I}-{\bf A})
=\det\left[\begin{array}{cc}\la...
...nd{array}\right]
=\lambda^2+2\zeta\omega_n\lambda+\omega_n^2=0
\end{displaymath}

Solving which we get the two eigenvalues and the eigenvalue matrix:

\begin{displaymath}
\lambda_{1,2}=(-\zeta\pm\sqrt{\zeta^2-1})\omega_n
\;\;\;\;\;...
...egin{array}{cc}\lambda_1 & 0 0 & \lambda_2\end{array}\right]
\end{displaymath}

Note that

\begin{displaymath}
\lambda_1\lambda_2=\omega_n^2,\;\;\;\;\;\;\;\;\;\;
\lambda_2-\lambda_1=2\omega_n\sqrt{\zeta^2-1}
\end{displaymath}

The eigenvector matrix and its inverse are:

\begin{displaymath}
{\bf V}=\left[\begin{array}{cc}1 & 1 \lambda_1 & \lambda_2...
...in{array}{cc}\lambda_2 & -1 -\lambda_1 & 1\end{array}\right]
\end{displaymath}

and we can verify thatat ${\bf A}={\bf V\Lambda V}^{-1}$.




next up previous
Next: About this document ...
Ruye Wang 2019-03-15