Real and Reactive Power and Power Factor

powerfactor.gif

All loads of a power plant can be modeled by a two-terminal network of passive elements (resistors, inductors, capacitors, without any energy sources) with a total complex impedance

$\displaystyle Z=R+jX=\vert Z\vert e^{j\angle Z}=\vert Z\vert e^{j\phi},\;\;\;\;...
...\vert Z\vert=\sqrt{R^2+X^2}\\ \angle Z=\phi=\tan^{-1}(X/R)>0
\end{array}\right.$ (391)

As the loads are typically inductive (e.g., electric motors, transformers), i.e., $X=\omega L>0$, the phase angle $\phi=\angle Z$ of the impedance is positive. We are concerned with the energy consumption (by $R$) and storage (in $L$) in the load. Let the input voltage to the load network be:

$\displaystyle v(t)=\sqrt{2}V_{rms} \cos(\omega t),\;\;\;\;\dot{V}=\sqrt{2}V_{rms}\angle 0$ (392)

then the current through the power transmission line and load can be found:

$\displaystyle \dot{I}=\frac{\dot{V}}{Z}=\frac{\sqrt{2}V_{rms}}{\vert Z\vert\ang...
...
=\sqrt{2}I_{rms}\angle(-\phi),\;\;\;\;i(t)=\sqrt{2}I_{rms} \cos(\omega t-\phi)$ (393)

where $I_{rms}=V_{rms}/\vert Z\vert$ is the RMS or effective value of the current. Note that the current is lagging the voltage by an angle $\phi$.

Consider the instantaneous power of the load defined as the product of the voltage and current:

$\displaystyle p_{in}(t)$ $\displaystyle =$ $\displaystyle v(t)\;i(t)=\sqrt{2}V_{rms}\cos(\omega t)\;\sqrt{2}I_{rms}\cos(\omega t-\phi)$  
  $\displaystyle =$ $\displaystyle 2V_{rms}I_{rms}\;\cos(\omega t)\;[\cos(\omega t)\cos\phi
+\sin(\omega t)\sin\phi ]$  
  $\displaystyle =$ $\displaystyle V_{rms}I_{rms} \left[\cos\phi\, \left(2\cos^2(\omega t)\right)
+\sin\phi\,\left(2\cos(\omega t)\sin(\omega t)\right) \right]$  
  $\displaystyle =$ $\displaystyle V_{rms}I_{rms} \;\left[ \cos\phi\; p(t) + \sin\phi\; q(t) \right]$  
  $\displaystyle =$ $\displaystyle S \;\left[\cos\phi\; p(t) + \sin\phi\; q(t) \right]
=P\; p(t)+Q\; q(t)$ (394)

where we have defined

$\displaystyle p(t)=2\cos^2(\omega t)=1+\cos 2\omega t,\;\;\;\;\;\;
q(t)=2\cos(\omega t)\sin(\omega t)=\sin 2\omega t$ (395)

and

The plots below show that the instantaneous power $p_{in}(t)$ can be represented as either a product of $v(t)$ and $i(t)$, or a weighted sum of the real power $p(t)$ and reactive power $q(t)$.

instantaneouspower0.gif

We note that

$\displaystyle \frac{1}{T}\int_T p(t)dt=\frac{1}{T}\int_T [1+cos(2\omega t)] dt=1
\;\;\;\;\;\;
\frac{1}{T}\int_T q(t)dt=\frac{1}{T}\int_T \sin(2\omega t) dt=0$ (396)

Consider the average power over one period $T=2\pi/\omega$:
$\displaystyle P_{average}$ $\displaystyle =$ $\displaystyle \frac{1}{T}\int_T p_{in}(t)dt
=\frac{1}{T}\int_T \left[P\; p(t) + Q\; q(t) \right] dt$  
  $\displaystyle =$ $\displaystyle S\cos\phi\;\frac{1}{T}\int_T p(t)dt+S\sin\phi\;\frac{1}{T}\int_T q(t)dt$  
  $\displaystyle =$ $\displaystyle P\;1+Q\;0=P$ (397)

We see that

The apparent power $S=V_{rms}I_{rms}$ can be considered as the magnitude of a complex product of $\dot{V}=V_{rms}\angle 0$ and $\overline{\dot{I}}=\overline{I_{rms}\angle(-\phi)}=I_{rms}\angle\phi$:

$\displaystyle \dot{V}\overline{\dot{I}}=V_{rms}\angle 0\; I_{rms}\angle \phi=V_{rms}I_{rms}\angle \phi
=S(\cos\phi+j\;\sin\phi)=P+jQ$ (398)

On the other hand, as $\dot{V}=Z\dot{I}=(R+jX)\dot{I}$, the above can also be written as:

$\displaystyle \dot{V}\overline{\dot{I}}=Z\dot{I}\overline{\dot{I}}
=(R+jX)\dot{I}\overline{\dot{I}}=RI^2_{rms}+jX I^2_{rms}$ (399)

Comparing the two expressions of $\dot{V}\overline{\dot{I}}$ above, we get:

$\displaystyle \left\{ \begin{array}{l}
P=I^2_{rms}R=S\;\cos\phi \\
Q=I^2_{rms}X=S\;\sin\phi \\
S=I^2_{rms}Z \end{array} \right.$ (400)

the last equation is due to

$\displaystyle S^2=P^2+Q^2=I^4_{rms}(R^2+X^2)=I^4_{rms}Z^2=(I^2_{rms}Z)^2$ (401)

We see that

ComplexPower.png

Improvement of Power Factor

The Power factor is defined as

$\displaystyle \lambda\stackrel{\triangle}{=}\cos \phi < 1$ (402)

It is desirable to maximize the power factor $\lambda$ by reducing $\phi$, for higher efficiency of the power transmission system, i.e., to deliver the real power $P$ to the load with minimum reactive power $Q$ (thereby minimum current and power dissipation along the transmission line).

To do so, we can include a shunt capacitor $C$ to cancel the inductive effect in the system, thereby reducing $\phi$ and increasing $\lambda$.

The most straight forward way is to add the shunt capacitor $C=1/\omega L$ in series with the inductive load, so that the inductive reactance $j\omega L$ is completely canceled by the capacitive reactance $1/j\omega C=-j\omega L$.

ShuntCapacitor0.png

However, we also note that at resonance, the voltages across $L$ and $C$ are $Q$ times the voltage across $R$, which is the same as the source voltage (see this page):

$\displaystyle \dot{V}_L=jQ\dot{V}_R,\;\;\;\;\;\dot{V}_C=-jQ\dot{V}_R$ (403)

the voltage across the inductive load $R+j\omega L$ becomes $\dot{V}_{RL}=\dot{V}_L+\dot{V}_R=jQ\dot{V}+\dot{V}=(1+jQ)\dot{V}$, which could be much higher than the expected source voltage $\dot{V}$ (without capacitor $C$) if $Q$ is large. Consequently, improper operation of the load or even damage may result.

The right way to compensate for the inductive impedance of the circuit is to include the shunt capacitor $C$ in parallel to the inductive load so that it still gets the expected voltage.

ShuntCapacitor1.png

Now the overall load becomes

$\displaystyle Z_{total}$ $\displaystyle =$ $\displaystyle Z_{RL}\vert\vert Z_C=(R+j\omega L)\; \vert\vert \;(1/j\omega C)$  
  $\displaystyle =$ $\displaystyle \frac{(R+j\omega L)/j\omega C}{(R+j\omega L)+1/j\omega C}
=\frac{R+j\omega L}{j\omega CR-\omega^2 LC+1}$ (404)

We need to find the capacitance $C$ so that the new phase angle $\phi=\angle Z_{total}$ is zero, i.e., the phases of the numerator and denominator need are the same:

$\displaystyle \tan^{-1}\left(\frac{\omega L}{R}\right)
=\tan^{-1}\left(\frac{\omega RC}{1-\omega^2 LC}\right),
\;\;\;\;\;$i.e.$\displaystyle \;\;\;\;\;\;
\frac{\omega L}{R}=\frac{\omega RC}{1-\omega^2 LC}
\;\;\;\;\;$i.e.$\displaystyle \;\;\;\;\;\;
L-\omega^2 L^2C=R^2C$ (405)

Solving this equation for $C$ we get:

$\displaystyle C_p=\frac{L}{R^2+\omega^2 L^2}
=\frac{1}{R^2/L+\omega^2 L}<\frac{1}{\omega^2L}=C_s$ (406)

Now the voltage across the inductive load is still the same as the voltage source as expected, and another benefit is that the required capacitance $C_p$ is smaller than the capacitance $C_s=1/\omega^2 L$ required for the series approach.

Power factor correction

Shunt capacitors

To reduce the cost of a large capacitance needed for the phase angle of the load to be reduced to zero $\phi=0$ so that $\lambda=\cos\phi=1$, it is acceptable for the improved power factor to be less than 1, e.g., 0.95. In this case, the phase angle of the load is

$\displaystyle \phi=\angle Z'=\tan^{-1}\left(\frac{\omega L}{R}\right)-\tan^{-1}\left(\frac{\omega RC}{1-\omega^2 LC}\right)=\cos^{-1}\; 0.95=18.2^\circ$ (407)

Solving this equation for $C$ we get the required capacitance. As now we have

$\displaystyle \tan^{-1}\left(\frac{\omega L}{R}\right)>\tan^{-1}\left(\frac{\omega RC}{1-\omega^2 LC}\right)$ (408)

i.e.,

$\displaystyle \frac{\omega L}{R}>\frac{\omega RC}{1-\omega^2 LC}$ (409)

we get an even smaller capacitance which is more practically implementable:

$\displaystyle C<\frac{L}{R^2+\omega^2 L^2}=\frac{1}{R^2/L+\omega^2L}$ (410)