next up previous
Next: Kernel Mapping Up: Soft Margin SVM Previous: 2-Norm Soft Margin

1-Norm Soft Margin

The primal Lagrangian for 1-norm problem above is

\begin{displaymath}L_p({\bf w},b,\xi,\alpha,\gamma)=\frac{1}{2}{\bf w}^T{\bf w}+...
...a_i[y_i({\bf w}^T{\bf x}+b)-1+\xi_i]-\sum_{i=1}^m\gamma_i\xi_i
\end{displaymath}

with $\alpha_i\ge 0$ and $\gamma_i \ge 0$. Substituting

\begin{displaymath}\frac{\partial L}{\partial {\bf w}}={\bf w}-\sum_{i=1}^m y_i\...
...;\;\;
\frac{\partial L}{\partial b}=\sum_{i=1}^m y_i\alpha_i=0 \end{displaymath}

into the primal Lagrangian, we get the dual problem
  $\textstyle \mbox{maximize}$ $\displaystyle L_d(\alpha,\gamma)=\sum_{i=1}^m\alpha_i
-\frac{1}{2}\sum_{i=1}^m...
..._i
-\sum_{i=1}^m \alpha_i\xi_i-\sum_{i=1}^m \gamma_i\xi_i
+C\sum_{i=1}^m\xi_i$  
    $\displaystyle =\sum_{i=1}^m\alpha_i
-\frac{1}{2}\sum_{i=1}^m\sum_{j=1}^m y_iy_j\alpha_i\alpha_j {\bf x}_j^T{\bf x}_i$  
  $\textstyle \mbox{subject to}$ $\displaystyle 0 \le \alpha_i \le C,\;\;\;\;
\sum_{i=1}^m \alpha_i y_i=0$  

Note that interestingly the objective function of the dual problem is identical to that of the linearly separable problem discussed previously, due to the nice cancellation based on $C=\alpha_i+\gamma_i$. Also, since $\alpha_i\ge 0$ and $\gamma_i \ge 0$, we have $0 \le \alpha_i \le C$. Solving this QP problem for $\alpha_i$, we get the optimal decision plane ${\bf w}$ and $b$ with the margin

\begin{displaymath}(\sum_{i\in sv}\sum_{j\in sv} \alpha_i\alpha_jy_iy_j{\bf x}_i^T{\bf x}_j)^{-1/2} \end{displaymath}



Ruye Wang 2016-08-24