The Sallen-Key filters

A Sallen-Key filter with the general configuration shown below is a second-order active filter that can be used to implement any of the low-pass, high-pass, and band-pass filtering.

SallenKey.gif

To find the frequency response function of the filter, we find the output voltage as a function of the input voltage both represented in phasor form, and apply the virtual ground assumption $V_b\approx V_-=V_{out}$ and the KCL to nodes a and b:

  $\displaystyle \frac{V_a-V_{in}}{Z_1}+\frac{V_a-V_{out}}{Z_3}+\frac{V_a-V_{out}}...
...frac{V_a-V_{in}}{Z_1}+(V_a-V_{out})\left(\frac{1}{Z_3}+\frac{1}{Z_2}\right)=0
$ (13)
and
  $\displaystyle \frac{V_{out}-V_a}{Z_2}+\frac{V_{out}}{Z_4}=0,
$ (14)
Solving the second equation for $V_a$, we get
  $\displaystyle V_a=V_{out}\frac{Z_2+Z_4}{Z_4}
$ (15)
We then substitut this into the first equation to get
  $\displaystyle V_{out}\;\left(\frac{Z_2+Z_4}{Z_1Z_4}+\frac{Z_2}{Z_3Z_4}+\frac{Z_2}{Z_2Z_4} \right)
=\frac{V_{in}}{Z_1}
$ (16)
Now the frequency response function can be found as the ratio of $V_{out}$ and $V_{in}$:
$\displaystyle H$ $\textstyle =$ $\displaystyle \frac{V_{out}}{V_{in}}=\frac{Z_3Z_4}{Z_1Z_2+Z_1Z_3+Z_2Z_3+Z_3Z_4}$ (17)

Example:

final20f.png

where $C=10^{-5}\,\mu F$, $R_1=8\,k\Omega,\;
R_2=0.16\,k\Omega,\;R_3=16\,k\Omega$.