- Constant gain
![$\displaystyle \left\{ \begin{array}{l}
\mbox{If $k>0, \;\;\;\;k=\vert k\vert e^...
...pi}, \;\;Lm\;k=20\;\log_{10}\vert k\vert,\;\;\angle k=\pi$}
\end{array} \right.$](img1367.svg) |
(499) |
- Delay factor:
![$\displaystyle Lm \;e^{ j\omega \tau}=20\;\log_{10} \vert e^{ j\omega \tau}\vert=20\;\log_{10} 1=0,\;\;\;\;
\angle e^{ j\omega \tau} =\pm \omega \tau$](img1368.svg) |
(500) |
- Derivative factor
:
![$\displaystyle Lm\; (j\omega)=20\; log_{10} \omega\;dB,\;\;\;\;\;\angle(j\omega)=\frac{\pi}{2}$](img1370.svg) |
(501) |
In particular:
Also consider two additional cases related to
. First,
![$\displaystyle Lm(j\omega)^{\pm m}=\pm m\;Lm(j\omega),\;\;\;\;\;\angle(j\omega)^{\pm m}=\pm m\pi/2$](img1376.svg) |
(503) |
The slop of the Lm plot is
. For example, when
, we have:
![$\displaystyle Lm\; (j\omega)^2=40\log_{10}\omega,\;\;\;\;\;\angle\;(j\omega)^2=\pi$](img1379.svg) |
(504) |
Second, the plots of
are similar to those of
, except the
zero-crossing occurs at
, i.e.,
.
- Integral factor
:
![$\displaystyle Lm \;(j\omega)^{-1}=-Lm\;(j\omega)=-20\;log_{10} \omega\;dB,
\;\;\;\;\angle\; (j\omega)^{-1}=-\angle(j\omega)=-\frac{\pi}{2}$](img1384.svg) |
(505) |
The Lm plot of
is a straight line with a slop of -20 dB/dec that goes
through a zero-crossing at
.
- First order factor in numerator
![$\displaystyle 1+j\omega \tau=\sqrt{1+(\omega \tau)^2}\;e^{j\tan^{-1}(\omega \tau)}
=\sqrt{1+(\omega \tau)^2}\;\angle \tan^{-1}(\omega \tau)$](img1387.svg) |
(506) |
![$\displaystyle Lm(1+j\omega \tau)=20\;\log_{10}\sqrt{1+(\omega \tau)^2}
=20\;\log_{10}(1+(\omega \tau)^2)^{1/2}=10\;\log_{10}(1+(\omega \tau)^2)$](img1388.svg) |
(507) |
![$\displaystyle \angle(1+j\omega \tau)=\tan^{-1}(\omega\tau)$](img1389.svg) |
(508) |
Consider the following three cases:
The straight-line asymptote of
has zero slope when
but a slope 20 dB/dec when
. The straight-line asymptote of
is zero when
,
when
,
but with a slope
in between.
- First order factor in denominator
![$\displaystyle Lm\;(1+j\omega\tau)^{-1}=-Lm(1+j\omega\tau)
=-10\;\log_{10}(1+(\omega \tau)^2)$](img1405.svg) |
(512) |
![$\displaystyle \angle\;(1+j\omega \tau)^{-1}=-\angle(1+j\omega \tau)
=-\tan^{-1}(\omega\tau)$](img1406.svg) |
(513) |
Both the Lm and phase plots of
is simply the negative
version of
.
The figure below shows the plots of two first order systems corner frequencies
and
, together with the plots of their product, a
second order system.
- Second-order factor
![$\displaystyle H(j\omega)=\frac{1}{(j\omega)^2+2\zeta\omega_n j\omega+\omega_n^2...
...1}{\omega_n^2}}{1-(\frac{\omega}{\omega_n})^2+j\,2\zeta\frac{\omega}{\omega_n}}$](img1410.svg) |
(514) |
The denominator is a 2nd order polynomial for variable
. Consider the
following two cases:
First, if
i.e., if
, the denominator has two real and negative roots:
![$\displaystyle p_{1,2}=(-\zeta\pm\sqrt{\zeta^2-1})\omega_n < 0$](img1413.svg) |
(515) |
and
can be written as a product of two first order FRFs:
![$\displaystyle H(j\omega)=\frac{1}{(j\omega-p_1)(j\omega-p_2)}
=\frac{1/p_1p_2}{...
...u_1}{1+j\omega\tau_1}\;\frac{\tau_2}{1+j\omega\tau_2}
=H_1(j\omega)H_2(j\omega)$](img1414.svg) |
(516) |
where
and
are the two time constant of the two
first order systems. Now the second order factor is the product of two first order
factors and
![$\displaystyle Lm\;(H_1 H_2)=Lm\; H_1+Lm\; H_2,\;\;\;\;\angle (H_1 H_2)=\angle H_1+\angle H_2$](img1417.svg) |
(517) |
with corner frequencies at
and
.
Second, if
, i.e., the two roots are complex. We consider the numerator
and the denominator separately. The numerator is just a constant with zero phase and
log-magnitude of
. Next consider the
rest of the function:
![$\displaystyle \vert H(j\omega)\vert=[(1-(\frac{\omega}{\omega_n})^2)^2+(2\zeta\frac{\omega}{\omega_n})^2]^{-1/2
}$](img1421.svg) |
(518) |
We have
|
|
![$\displaystyle Lm\;H(j\omega)=20\log_{10} \vert H(j\omega)\vert
=-10\;\log_{10}[\; (1-(\frac{\omega}{\omega_n})^2)^2+(2\zeta\frac{\omega}{\omega_n})^2\;]$](img1422.svg) |
(519) |
![$\displaystyle \angle H(j\omega)=-\tan^{-1}\frac{2\zeta\omega/\omega_n}{1-(\omega/\omega_n)^2}$](img1423.svg) |
(520) |
Consider three cases:
-
:
Now
and
![$\displaystyle Lm\;H(j\omega)=-20\;\log_{10} 2\zeta,\;\;\;\;\;\angle H(j\omega)=-\frac{\pi}{2}$](img1426.svg) |
(521) |
-
, i.e.,
:
![$\displaystyle Lm\;H(j\omega) \approx -10\;\log_{10} (1)=0,\;\;\;\;\;\angle H(j\omega)=0^\circ$](img1429.svg) |
(522) |
-
, i.e.,
:
![$\displaystyle Lm\;H(j\omega)\approx-10\;\log_{10}[\; (\frac{\omega}{\omega_n})^4 ]
=-40 \;\log_{10} \frac{\omega}{\omega_n}$](img1431.svg) |
(523) |
This is a straight line with slop of -40 dB per decade.
![$\displaystyle \angle H(j\omega) \approx -\tan^{-1} (-2\zeta \omega_n/\omega)
\approx -\tan^{-1} (-0)=-\pi=-180^\circ$](img1432.svg) |
(524) |