Bode Plots of Components

  1. Constant gain $k$

    $\displaystyle \left\{ \begin{array}{l}
\mbox{If $k>0, \;\;\;\;k=\vert k\vert e^...
...pi}, \;\;Lm\;k=20\;\log_{10}\vert k\vert,\;\;\angle k=\pi$}
\end{array} \right.$ (499)

  2. Delay factor: $e^{\pm j\omega \tau}$

    $\displaystyle Lm \;e^{ j\omega \tau}=20\;\log_{10} \vert e^{ j\omega \tau}\vert=20\;\log_{10} 1=0,\;\;\;\;
\angle e^{ j\omega \tau} =\pm \omega \tau$ (500)

  3. Derivative factor $j\omega=\omega\; e^{j\pi/2}$:

    $\displaystyle Lm\; (j\omega)=20\; log_{10} \omega\;dB,\;\;\;\;\;\angle(j\omega)=\frac{\pi}{2}$ (501)

    In particular:

    Also consider two additional cases related to $j\omega$. First, $(j\omega)^{\pm m}=\omega^{\pm m} e^{\pm j m\pi/2}$

    $\displaystyle Lm(j\omega)^{\pm m}=\pm m\;Lm(j\omega),\;\;\;\;\;\angle(j\omega)^{\pm m}=\pm m\pi/2$ (503)

    The slop of the Lm plot is $\pm 20m/dec$. For example, when $m=2$, we have:

    $\displaystyle Lm\; (j\omega)^2=40\log_{10}\omega,\;\;\;\;\;\angle\;(j\omega)^2=\pi$ (504)

    Second, the plots of $j\omega\tau$ are similar to those of $j\omega$, except the zero-crossing occurs at $\omega\tau=1$, i.e., $\omega=1/\tau$.

  4. Integral factor $1/j\omega=(j\omega)^{-1}$:

    $\displaystyle Lm \;(j\omega)^{-1}=-Lm\;(j\omega)=-20\;log_{10} \omega\;dB,
\;\;\;\;\angle\; (j\omega)^{-1}=-\angle(j\omega)=-\frac{\pi}{2}$ (505)

    The Lm plot of $1/j\omega$ is a straight line with a slop of -20 dB/dec that goes through a zero-crossing at $\omega=1$.

  5. First order factor in numerator $1+j\omega\tau$

    $\displaystyle 1+j\omega \tau=\sqrt{1+(\omega \tau)^2}\;e^{j\tan^{-1}(\omega \tau)}
=\sqrt{1+(\omega \tau)^2}\;\angle \tan^{-1}(\omega \tau)$ (506)

    $\displaystyle Lm(1+j\omega \tau)=20\;\log_{10}\sqrt{1+(\omega \tau)^2}
=20\;\log_{10}(1+(\omega \tau)^2)^{1/2}=10\;\log_{10}(1+(\omega \tau)^2)$ (507)

    $\displaystyle \angle(1+j\omega \tau)=\tan^{-1}(\omega\tau)$ (508)

    Consider the following three cases: The straight-line asymptote of $Lm(1+j\omega\tau)$ has zero slope when $\omega\tau<1$ but a slope 20 dB/dec when $\omega\tau>1$. The straight-line asymptote of $\angle(1+j\omega\tau)$ is zero when $\omega\tau<0.1$, $\pi/2$ when $\omega\tau>10$, but with a slope $45^\circ/dec$ in between.

  6. First order factor in denominator $1/(1+j\omega\tau)=(1+j\omega\tau)^{-1}$

    $\displaystyle Lm\;(1+j\omega\tau)^{-1}=-Lm(1+j\omega\tau)
=-10\;\log_{10}(1+(\omega \tau)^2)$ (512)

    $\displaystyle \angle\;(1+j\omega \tau)^{-1}=-\angle(1+j\omega \tau)
=-\tan^{-1}(\omega\tau)$ (513)

    Both the Lm and phase plots of $1/(1+j\omega\tau)$ is simply the negative version of $(1+j\omega\tau)$.

    The figure below shows the plots of two first order systems corner frequencies $\omega_1=100$ and $\omega_2=1000$, together with the plots of their product, a second order system.

    bodeplot1storder.gif

  7. Second-order factor

    $\displaystyle H(j\omega)=\frac{1}{(j\omega)^2+2\zeta\omega_n j\omega+\omega_n^2...
...1}{\omega_n^2}}{1-(\frac{\omega}{\omega_n})^2+j\,2\zeta\frac{\omega}{\omega_n}}$ (514)

    The denominator is a 2nd order polynomial for variable $j\omega$. Consider the following two cases:

    First, if $\Delta=b^2-4ac=(2\zeta\omega_n)^2-4\omega_n^2=4\omega^2_n(\zeta^2-1)\ge 0$ i.e., if $\zeta\ge 1$, the denominator has two real and negative roots:

    $\displaystyle p_{1,2}=(-\zeta\pm\sqrt{\zeta^2-1})\omega_n < 0$ (515)

    and $H(j\omega)$ can be written as a product of two first order FRFs:

    $\displaystyle H(j\omega)=\frac{1}{(j\omega-p_1)(j\omega-p_2)}
=\frac{1/p_1p_2}{...
...u_1}{1+j\omega\tau_1}\;\frac{\tau_2}{1+j\omega\tau_2}
=H_1(j\omega)H_2(j\omega)$ (516)

    where $\tau_1=-1/p_1>0$ and $\tau_2=-1/p_2>0$ are the two time constant of the two first order systems. Now the second order factor is the product of two first order factors and

    $\displaystyle Lm\;(H_1 H_2)=Lm\; H_1+Lm\; H_2,\;\;\;\;\angle (H_1 H_2)=\angle H_1+\angle H_2$ (517)

    with corner frequencies at $\omega_{c1}=1/\tau_1=p_1$ and $\omega_{c1}=1/\tau_2=p_2$.

    Second, if $0 < \zeta < 1$, i.e., the two roots are complex. We consider the numerator and the denominator separately. The numerator is just a constant with zero phase and log-magnitude of $20\log_{10} \omega_n^{-}2=-40\log_{10} \omega_n$. Next consider the rest of the function:

    $\displaystyle \vert H(j\omega)\vert=[(1-(\frac{\omega}{\omega_n})^2)^2+(2\zeta\frac{\omega}{\omega_n})^2]^{-1/2
}$ (518)

    We have
        $\displaystyle Lm\;H(j\omega)=20\log_{10} \vert H(j\omega)\vert
=-10\;\log_{10}[\; (1-(\frac{\omega}{\omega_n})^2)^2+(2\zeta\frac{\omega}{\omega_n})^2\;]$ (519)

    $\displaystyle \angle H(j\omega)=-\tan^{-1}\frac{2\zeta\omega/\omega_n}{1-(\omega/\omega_n)^2}$ (520)

    Consider three cases:

bodeplotzeta.gif

The magnitude of the second-order factor is

$\displaystyle \vert H(j\omega)\vert
=\frac{1}{\sqrt{(1-\frac{\omega^2}{\omega_n^2})^2+4\zeta^2 \frac{\omega^2}{\omega_n^2}}}
=\frac{1}{\sqrt{(1-u)^2+4\zeta^2 u}}$ (525)

where $u=(\omega/\omega_n)^2$. When $u=1$ i.e., $\omega=\omega_n$, we have

$\displaystyle \vert H(j\omega_n) \vert=\frac{1}{2\zeta}=Q$ (526)

However, the peak of $\vert H(j\omega)\vert$ is not at $\omega_n$, but at the resonant frequency $\omega_p$, which can be found by taking derivative of the magnitude of the denominator with respect to $u$ and setting it to zero:

$\displaystyle \frac{d}{du}[u^2+(4\zeta^2-2)u+1]=2u+4\zeta^2-2=0$ (527)

Solving it, we get:

$\displaystyle u=\frac{\omega^2}{\omega_n^2}=1-2\zeta^2,\;\;\;$i.e.,$\displaystyle \;\;\;\;\omega=\omega_n\sqrt{1-2\zeta^2} < \omega_n$ (528)

At this peak frequency $\omega_p=\omega_n\sqrt{1-2\zeta^2}$, the peak is:

$\displaystyle \vert H(j\omega_p) \vert=\frac{1}{2\zeta\sqrt{1-\zeta^2}} > \frac{1}{2\zeta}=\vert H(j\omega_n) \vert$ (529)

Note that if $\zeta^2>1/2$, i.e., $\zeta>0.707$, the result is complex indicating there is no peak.