next up previous
Next: Nonhomogeneous DE System Up: DEsystem Previous: Homogeneous DE System

Matrix Exponential Function

Based on the Taylor expansion of the exponential function of a scalor variable:

\begin{displaymath}
e^x=\sum_{n=0}^\infty \frac{x^n}{n!}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots
\end{displaymath}

we can also define the exponential function of a matrix ${\bf A}$ as

\begin{displaymath}
e^{\bf A}=\exp({\bf A})=\sum_{n=0}^\infty \frac{{\bf A}^n}{n...
... I}+{\bf A}+\frac{1}{2!}{\bf A}^2+\frac{1}{3!}{\bf A}^3+\cdots
\end{displaymath}

In particular, when ${\bf A}={\bf0}$, we get $\exp({\bf0})={\bf I}$.

Consider the eigenequation of ${\bf A}$:

\begin{displaymath}
{\bf Av}_i=\lambda_i{\bf v}_i,\;\;\;\;\;\;\;(i=1,\cdots,n)
\end{displaymath}

These $n$ equations can be combined to become

\begin{displaymath}
{\bf AV}={\bf A}[{\bf v}_1,\cdots,{\bf v}_n]=[{\bf v}_1,\cdo...
...s&\vdots 0&\cdots&\lambda_n\end{array}\right]={\bf V\Lambda}
\end{displaymath}

we therefore also have

\begin{displaymath}
{\bf A}={\bf V\Lambda V}^{-1},\;\;\;
{\bf A}^2=({\bf V\Lambd...
...{-1},\;\;\;
{\bf A}^3={\bf V\Lambda}^3{\bf V}^{-1}\cdots\cdots
\end{displaymath}

i.e., in general,

\begin{displaymath}
{\bf A}^n={\bf V\Lambda}^n{\bf V}^{-1}
\end{displaymath}

Now r$\exp({\bf A})$ can be written as:
$\displaystyle \exp({\bf A})$ $\textstyle =$ $\displaystyle \exp({\bf V\Lambda V}^{-1})={\bf I}+{\bf V\Lambda V}^{-1}
+\frac...
...2!}{\bf V\Lambda}^2{\bf V}^{-1}+\frac{1}{3!}{\bf V\Lambda}^3{\bf V}^{-1}+\cdots$  
  $\textstyle =$ $\displaystyle {\bf V}\left[{\bf I}+{\bf\Lambda}+\frac{1}{2!}{\bf\Lambda}^2+\fra...
...}{\bf\Lambda}^3
+\cdots\right]{\bf V}^{-1}
={\bf V}e^{\bf\Lambda}{\bf V}^{-1}$  
  $\textstyle =$ $\displaystyle {\bf V}\left[\begin{array}{ccc}e^{\lambda_1}&\cdots&0  \vdots&\ddots&\vdots  0&\cdots&e^{\lambda_n}\end{array}\right]{\bf V}^{-1}$  



Ruye Wang 2019-02-21