next up previous
Next: Matrix Exponential Function Up: DEsystem Previous: Differential Equation System

Homogeneous DE System

Consider solving a set of $n$ first order constant coefficient ordinary differential equations (ODE):

\begin{displaymath}
\frac{d}{dt}y_i(t)=\dot{y}_i(t)=\sum_{j=1}^n a_{ij} y_j(t)+x_i(t),
\;\;\;\;\;\;\;(i=1,\cdots,n)
\end{displaymath}

which can be written in matrix form:

\begin{displaymath}
\dot{\bf y}(t)={\bf A}{\bf y}(t)+{\bf x}(t)
\end{displaymath}

where

\begin{displaymath}
{\bf x}=\left[\begin{array}{c}x_1 \vdots x_n\end{array}\...
...& \ddots & \vdots  a_{n1} & \cdots &a_{nn}\end{array}\right]
\end{displaymath}

In particular, if ${\bf x}(t)={\bf0}$, we get a homogeneous ODE system:

\begin{displaymath}
\dot{\bf y}={\bf A}{\bf y}
\end{displaymath}

We let the solution take the form of ${\bf y}(t)=e^{\lambda t}{\bf v}$, where scalor $\lambda$ and vector ${\bf v}$ are to be determined. We then have e $\dot{\bf y}(t)=\lambda e^{\lambda t}{\bf v}$. Substituting these into the DE system we get

\begin{displaymath}
\dot{\bf y}=\lambda e^{\lambda t}{\bf v}={\bf A}{\bf y}
={\bf A}e^{\lambda t}{\bf v}
\end{displaymath}

Dividing both sides by $e^{\lambda t}\ne 0$, we get:

\begin{displaymath}
{\bf Av}=\lambda{\bf v}
\end{displaymath}

This happens to be the eigenequation of ${\bf A}$, and $\lambda$ and ${\bf v}$ can be found as the eigenvalue and the corresponding eigenvector of ${\bf A}$. In general, solving this equation we get $n$ eigenvalues $\lambda_1,\cdots,\lambda_n$ and their corresponding eigenvectors ${\bf v}_1,\cdots,{\bf v}_n$. We therefore get a set of $n$ fundamental solutions $e^{\lambda_it}{\bf v}_i\;(i=1,\cdots,n)$ of the ODE system, all satisfying

\begin{displaymath}
{\bf Av}_i=\lambda_i{\bf v}_i,\;\;\;\;\;\;(i=1,\cdots,n)
\end{displaymath}

These $n$ equations can be combined to become

\begin{displaymath}
{\bf A}[{\bf v}_1,\cdots,{\bf v}_n]=[{\bf v}_1,\cdots,{\bf v...
...ight]
\;\;\;\;\;\;\mbox{or}\;\;\;\;\;\;{\bf AV}={\bf V\Lambda}
\end{displaymath}

where

\begin{displaymath}
{\bf\Lambda}=\left[\begin{array}{ccc}\lambda_1&\cdots&0 \...
...ray}\right],\;\;\;\;\;\;
{\bf V}=[{\bf v}_1,\cdots,{\bf v}_n]
\end{displaymath}

are the eigenvalue and eigenvector matrices of ${\bf A}$.

The fundamental matrix of the ODE system $\dot{\bf y}={\bf Ay}$ is a matrix of which each column is a solution:

\begin{displaymath}[e^{\lambda_1t}{\bf v}_1,\cdots,e^{\lambda_nt}{\bf v}_n]
=[{\...
...\cdots&e^{\lambda_nt}\end{array}\right]
={\bf V}e^{{\Lambda}t}
\end{displaymath}

The general solution of the ODE system is a linear combination of the $n$ fundamental solutions

\begin{displaymath}
{\bf y}(t)=\sum_{i=1}^n c_i e^{\lambda_it}{\bf v}_i
=[e^{\la...
...vdots c_n\end{array}\right]
={\bf V}e^{{\bf\Lambda}t}{\bf c}
\end{displaymath}

where ${\bf c}=[c_1,\cdots,c_n]^T$ is a vector containing $n$ coefficients, which can be found based on the $n$ given initial conditions ${\bf y}(0)=[y_1(0),\cdots,y_n(0)]^T$. Specifically, evaluating the solution ${\bf y}(t)$ at $t=0$, we get

\begin{displaymath}
{\bf y}(t)\bigg\vert _{t=0}=\sum_{i=1}^n c_i e^{\lambda_it}{...
..._1 \vdots c_n\end{array}\right]
={\bf V}{\bf c}={\bf y}(0)
\end{displaymath}

Solving the equation ${\bf Vc}={\bf y}(0)$ we get the $n$ coefficients:

\begin{displaymath}
{\bf c}={\bf V}^{-1}{\bf y}(0)
\end{displaymath}

Substituting this ${\bf c}$ back into the general solution above, we finally get the homogeneous solution of the ODE system:

\begin{displaymath}
{\bf y}(t)={\bf V}e^{{\bf\Lambda}t}{\bf c}
={\bf V}e^{{\bf\Lambda}t}{\bf V}^{-1}{\bf y}(0)
\end{displaymath}

Example

Solve the following DE

\begin{displaymath}
\left\{\begin{array}{l}\dot{y}_1=2y_1+3y_2 \dot{y}_2=4y_1-2y_2\end{array}\right.
\end{displaymath}

with initial conditions $y_1(0)=5$ and $y_2(0)=6$. The coefficient matrix is

\begin{displaymath}
{\bf A}=\left[\begin{array}{rr}2 & 3 4 & -2\end{array}\right]
\end{displaymath}

and its eigenvalues are $\lambda_1=4$ and $\lambda_2=-4$ and their corresponding eigenvectors are

\begin{displaymath}
{\bf v}_1=c_1\left[\begin{array}{r}3 2\end{array}\right],
...
...;
{\bf v}_2=c_2\left[\begin{array}{r}-1 2\end{array}\right],
\end{displaymath}

The solution is

\begin{displaymath}
{\bf y}=c_1e^{4t}\left[\begin{array}{r}3 2\end{array}\right]
+c_2e^{-4t}\left[\begin{array}{r}-1 2\end{array}\right],
\end{displaymath}

The coefficients can be found by

\begin{displaymath}
{\bf c}={\bf V}^{-1}{\bf y}(0)=\left[\begin{array}{rr}3 & -1...
...d{array}\right]
=\left[\begin{array}{r}2 1\end{array}\right]
\end{displaymath}

The solution is

\begin{displaymath}
{\bf y}=2e^{4t}\left[\begin{array}{r}3 2\end{array}\right]
+e^{-4t}\left[\begin{array}{r}-1 2\end{array}\right],
\end{displaymath}

i.e.,

\begin{displaymath}
\left\{\begin{array}{l}y_1(t)=6e^{4t}-e^{-4t} y_2(t)=4e^{4t}+2e^{-4t}\end{array}\right.
\end{displaymath}


next up previous
Next: Matrix Exponential Function Up: DEsystem Previous: Differential Equation System
Ruye Wang 2019-02-21