next up previous
Next: Homogeneous DE System Up: DEsystem Previous: Linear Constant Coefficient ODE

Differential Equation System

We consider solving an Nth-order single-variable explicit ODE in the following form

\begin{displaymath}
\frac{d}{dt^N}y(t)=y^{(N)}(t)=f(t, y'(t),\cdots,y^{(N-1)}(t))
\end{displaymath} (1)

We first convert the Nth order DE into a set of $N$ first order ODEs by defining $y_i(t)=y^{(i-1)}(t)$ ($i=1,\cdots,N$). These $N$ functions can be represented in vector form:
\begin{displaymath}
{\bf y}(t)=\left[\begin{array}{c}y_1(t) y_2(t) y_3(t)\\...
...2(t) \vdots y'_{N-2}(t) y'_{N-1}(t)
\end{array} \right]
\end{displaymath} (2)

Now the Nth-order ODE can be written as

$\displaystyle \frac{d^N}{dt^N}y(t)=y^{(N)}(t)$ $\textstyle =$ $\displaystyle f(t,y(t),y'(t),y''(t),\cdots,y^{(N-1)}(t))$  
  $\textstyle =$ $\displaystyle f(t, y_1(t),y_2(t),y_3(t),\cdots,y_N(t))=f(t, {\bf y}(t))$ (3)

and converted into a set of $N$ first-order differential equations:
\begin{displaymath}
\frac{d}{dt}{\bf y}(t)={\bf y}'(t)
=\left[\begin{array}{c}y'...
... f(t, {\bf y}(t))\end{array}\right]
={\bf f}(t, {\bf y}(t))
\end{displaymath} (4)

This ODE system can then be solved as a special case of an ODE system of $N$ simultaneous first-order ODEs.

In the special case of an Nth order LCCODE:

\begin{displaymath}
\sum_{n=0}^N a_n y^{(n)}(t)=x(t),\;\;\;\;\;\mbox{i.e.}\;\;\;\;\;\;
y^{(N)}(t)=-\sum_{n=0}^{N-1}a_n y^{(n)}(t)+x(t)
\end{displaymath}

where $a_N=1$. We define $y_i(t)=y^{(i-1)}(t)$ and get
\begin{displaymath}
\frac{d}{dt}{\bf y}(t)=\dot{\bf y}(t)
=\left[\begin{array}...
...}{c}0 0 0 \vdots 0 x(t)\end{array}\right]
\nonumber
\end{displaymath}  

which can be written in matrix form as

\begin{displaymath}
\dot{\bf y}(t)={\bf Ay}(t)+{\bf x}(t)
\end{displaymath}


next up previous
Next: Homogeneous DE System Up: DEsystem Previous: Linear Constant Coefficient ODE
Ruye Wang 2019-02-21