next up previous
Next: Differential Equation System Up: DEsystem Previous: DEsystem

Linear Constant Coefficient ODE (LCCODE)

We first consider the complete solution of a first order LCCODE:

\begin{displaymath}
\frac{d}{dt} y(t)+ay(t)=\dot{y}(t)+ay(t)=x(t)
\end{displaymath}

is $y(t)=y_h(t)+y_p(t)$, the sum of the homogeneous solution $y_h(t)$ and a particular solution $y_p(t)$.

The DE can also be solved in s-domain based on Laplace transform. Taking Laplace transform on both sides of the DE, we get

\begin{displaymath}
{\cal L}\left[ \;\dot{y}(t)+ay(t)\;\right]
=sY(s)-y(0)={\cal L}\left[ \;x(t)\;\right]=X(s)
\end{displaymath}

Solving for $Y(s)$ we get

\begin{displaymath}
Y(s)=\frac{y_0}{s+a}+\frac{X(s)}{s+a}
\end{displaymath}

Taking inverse transform we get

\begin{displaymath}
y(t)={\cal L}^{-1} \left[\frac{y_0}{s+a}\right]
+{\cal L}^{-1}\left[ \frac{X(s)}{s+a}\right]
=y_0e^{-at}+x(t)\;*\;e^{-at}
\end{displaymath}

We next consider the complete solution of a second order LCCODE in the following canonical form:

\begin{displaymath}
\ddot{y}(t)+2\zeta\omega_n \dot{y}(t)+\omega_n^2 y(t)=x(t)
\end{displaymath}

Same as in the first order case, the complete solution of this second order LCCODE is composed of the homogeneous solution $y_h(t)$ when $x(t)=0$, and the particular solution $y_p(t)$ when $x(t)\ne 0$.


next up previous
Next: Differential Equation System Up: DEsystem Previous: DEsystem
Ruye Wang 2019-02-21