 
 
 
 
 
   
The discrete signal 
![${\bf x}=[x[0],\cdots,x[N-1]]^T$](img146.png) is a set of N samples taken 
from a continuous signal
 is a set of N samples taken 
from a continuous signal
![\begin{displaymath}x[m]=x(t_0+m \triangle t),\;\;\;\;(m=0,1,\cdots,N-1) \end{displaymath}](img147.png) 
 and sampling period
 and sampling period  . The basis functions
. The basis functions
![${\bf\varphi}=[\varphi[0],\cdots,\varphi[N-1]]^T$](img150.png) and
 and 
![${\bf\psi}=[\psi[0],\cdots,
\psi[N-1]]^T$](img151.png) are also vectors containing
 are also vectors containing  elements. We let
 elements. We let  ,
,  ,
,
 and
 and 
 . Correspondingly the wavelet expansion
becomes discrete wavelet transform (DWT). The discrete function is represented as 
a weighted sum in the space spanned by the bases
. Correspondingly the wavelet expansion
becomes discrete wavelet transform (DWT). The discrete function is represented as 
a weighted sum in the space spanned by the bases  and
 and  :
:
![\begin{displaymath}
x[m]=\frac{1}{\sqrt{N}}\sum_k W_{\varphi}[j_0,k]\varphi_{j_0...
... \sum_k W_{\psi}[j,k]\psi_{j,k}[m],
\;\;\;\;\;(m=0,\cdots,N-1) \end{displaymath}](img158.png) 
 is for different
scale levels and the summation over
 is for different
scale levels and the summation over  is for different translations in each scale 
level, and the coefficients (weights) are projections of the function onto each of
the basis functions:
 is for different translations in each scale 
level, and the coefficients (weights) are projections of the function onto each of
the basis functions:
![\begin{displaymath}W_{\varphi}[j_0,k]=({\bf x},{\bf\varphi}_{j_0,k})=\frac{1}{\s...
...=0}^{N-1} x[m] \varphi_{j_0,k}[m],\;\;\;\;\mbox{(for all $k$)} \end{displaymath}](img159.png) 
![\begin{displaymath}W_{\psi}[j,k]=({\bf x},{\bf\psi}_{j,k})=\frac{1}{\sqrt{N}}\su...
...m] \psi_{j,k}[m],\;\;\;\;\mbox{(for all $k$ and all $j>j_0$)} \end{displaymath}](img160.png) 
![$W_{\varphi}[j_0,k]$](img161.png) is called the approximation coefficient and
 is called the approximation coefficient and 
![$W_{\psi}[j,k]$](img162.png) is called the detail coefficient. These are the forward
wavelet transform.
 is called the detail coefficient. These are the forward
wavelet transform. 
An Example:
Assume  -point discrete singal
-point discrete singal 
![${\bf x}=[x[0],\cdots,x[N-1]]^T=[1, 4, -3, 0]^T$](img164.png) and the discrete Haar scaling and wavelet functions are:
and the discrete Haar scaling and wavelet functions are:
![\begin{displaymath}\left[ \begin{array}{rrrr}
1 & 1 & 1 & 1  1 & 1 & -1 & -1 \...
... \psi_{0,0}[m]  \psi_{1,0}[m]  \psi_{1,1}[m]
\end{array}\end{displaymath}](img165.png) 
 :
:
![\begin{displaymath}W_{\varphi}[0,0]=\frac{1}{2}\sum_{m=0}^3 x[m]\varphi_{0,0}[m]
=\frac{1}{2}[1\cdot 1+4\cdot 1-3\cdot 1+0\cdot 1]=1 \end{displaymath}](img166.png) 
 :
:
![\begin{displaymath}W_{\psi}[0,0]=\frac{1}{2}\sum_{m=0}^3 x[m]\psi_{0,0}[m]
=\frac{1}{2}[1\cdot 1+4\cdot 1-3\cdot (-1)+0\cdot (-1)]=4 \end{displaymath}](img167.png) 
 :
:
![\begin{displaymath}W_{\psi}[1,0]=\frac{1}{2}\sum_{m=0}^3 x[m]\psi_{1,0}[m]
=\fr...
...ot \sqrt{2}+4\cdot (-\sqrt{2})-3\cdot 0+0\cdot 0]=-1.5\sqrt{2} \end{displaymath}](img168.png) 
![\begin{displaymath}W_{\psi}[1,1]=\frac{1}{2}\sum_{m=0}^3 x[m]\psi_{1,0}[m]
=\fr...
...ot 0+4\cdot 0-3\cdot \sqrt{2}+0\cdot (-\sqrt{2})]=-1.5\sqrt{2} \end{displaymath}](img169.png) 
![\begin{displaymath}\left[ \begin{array}{c} 1  4 -1.5\sqrt{2} -1.5\sqrt{2} ...
...t]
\left[ \begin{array}{c} 1  4 -3 0 \end{array} \right]
\end{displaymath}](img170.png) 
![$x[m]$](img171.png) can be expressed as a linear combination of these basis
functions:
 can be expressed as a linear combination of these basis
functions:
![\begin{displaymath}x[m]=\frac{1}{2}[W_{\varphi}[0,0]\varphi_{0,0}[m]+W_{\psi}[0,...
...[m]+W_{\varphi}[1,1]\psi_{1,1}[m]
\;\;\;\;\;\;(m=0,\cdots,3) \end{displaymath}](img172.png) 
![\begin{displaymath}\left[ \begin{array}{r} 1  4 -3 0 \end{array} \right]
=...
...y}{c} 1  4 -1.5\sqrt{2} -1.5\sqrt{2} \end{array} \right]
\end{displaymath}](img173.png) 
 
 
 
 
