next up previous
Next: Fast Wavelet Transform (FWT) Up: wavelets Previous: Wavelet Expansion

Discrete Wavelet Transform

The discrete signal ${\bf x}=[x[0],\cdots,x[N-1]]^T$ is a set of N samples taken from a continuous signal

\begin{displaymath}x[m]=x(t_0+m \triangle t),\;\;\;\;(m=0,1,\cdots,N-1) \end{displaymath}

for some initial time $t_0$ and sampling period $\triangle t$. The basis functions ${\bf\varphi}=[\varphi[0],\cdots,\varphi[N-1]]^T$ and ${\bf\psi}=[\psi[0],\cdots,
\psi[N-1]]^T$ are also vectors containing $N$ elements. We let $j_0=0$, $N=2^J$, $j=0,1,\cdots,J-1$ and $k=0,1,\cdots,2^j-1$. Correspondingly the wavelet expansion becomes discrete wavelet transform (DWT). The discrete function is represented as a weighted sum in the space spanned by the bases ${\bf\varphi}$ and ${\bf\psi}$:

\begin{displaymath}
x[m]=\frac{1}{\sqrt{N}}\sum_k W_{\varphi}[j_0,k]\varphi_{j_0...
... \sum_k W_{\psi}[j,k]\psi_{j,k}[m],
\;\;\;\;\;(m=0,\cdots,N-1) \end{displaymath}

This is the inverse wavelet transform where the summation over $j$ is for different scale levels and the summation over $k$ is for different translations in each scale level, and the coefficients (weights) are projections of the function onto each of the basis functions:

\begin{displaymath}W_{\varphi}[j_0,k]=({\bf x},{\bf\varphi}_{j_0,k})=\frac{1}{\s...
...=0}^{N-1} x[m] \varphi_{j_0,k}[m],\;\;\;\;\mbox{(for all $k$)} \end{displaymath}


\begin{displaymath}W_{\psi}[j,k]=({\bf x},{\bf\psi}_{j,k})=\frac{1}{\sqrt{N}}\su...
...m] \psi_{j,k}[m],\;\;\;\;\mbox{(for all $k$ and all $j>j_0$)} \end{displaymath}

where $W_{\varphi}[j_0,k]$ is called the approximation coefficient and $W_{\psi}[j,k]$ is called the detail coefficient. These are the forward wavelet transform.

An Example:

Assume $N=4$-point discrete singal ${\bf x}=[x[0],\cdots,x[N-1]]^T=[1, 4, -3, 0]^T$ and the discrete Haar scaling and wavelet functions are:

\begin{displaymath}\left[ \begin{array}{rrrr}
1 & 1 & 1 & 1  1 & 1 & -1 & -1 \...
... \psi_{0,0}[m]  \psi_{1,0}[m]  \psi_{1,1}[m]
\end{array}\end{displaymath}

The coefficient for $V_0$:

\begin{displaymath}W_{\varphi}[0,0]=\frac{1}{2}\sum_{m=0}^3 x[m]\varphi_{0,0}[m]
=\frac{1}{2}[1\cdot 1+4\cdot 1-3\cdot 1+0\cdot 1]=1 \end{displaymath}

The coefficient for $W_0$:

\begin{displaymath}W_{\psi}[0,0]=\frac{1}{2}\sum_{m=0}^3 x[m]\psi_{0,0}[m]
=\frac{1}{2}[1\cdot 1+4\cdot 1-3\cdot (-1)+0\cdot (-1)]=4 \end{displaymath}

The two coefficients for $W_1$:

\begin{displaymath}W_{\psi}[1,0]=\frac{1}{2}\sum_{m=0}^3 x[m]\psi_{1,0}[m]
=\fr...
...ot \sqrt{2}+4\cdot (-\sqrt{2})-3\cdot 0+0\cdot 0]=-1.5\sqrt{2} \end{displaymath}


\begin{displaymath}W_{\psi}[1,1]=\frac{1}{2}\sum_{m=0}^3 x[m]\psi_{1,0}[m]
=\fr...
...ot 0+4\cdot 0-3\cdot \sqrt{2}+0\cdot (-\sqrt{2})]=-1.5\sqrt{2} \end{displaymath}

In matrix form, we have

\begin{displaymath}\left[ \begin{array}{c} 1  4 -1.5\sqrt{2} -1.5\sqrt{2} ...
...t]
\left[ \begin{array}{c} 1  4 -3 0 \end{array} \right]
\end{displaymath}

Now the function $x[m]$ can be expressed as a linear combination of these basis functions:


\begin{displaymath}x[m]=\frac{1}{2}[W_{\varphi}[0,0]\varphi_{0,0}[m]+W_{\psi}[0,...
...[m]+W_{\varphi}[1,1]\psi_{1,1}[m]
\;\;\;\;\;\;(m=0,\cdots,3) \end{displaymath}

or in matrix form:

\begin{displaymath}\left[ \begin{array}{r} 1  4 -3 0 \end{array} \right]
=...
...y}{c} 1  4 -1.5\sqrt{2} -1.5\sqrt{2} \end{array} \right]
\end{displaymath}


next up previous
Next: Fast Wavelet Transform (FWT) Up: wavelets Previous: Wavelet Expansion
Ruye Wang 2008-12-16