next up previous
Next: Two-Dimensional Fourier Transform (2DFT) Up: fourier Previous: Fast Fourier Transform (FFT)

Fourier Transform 2 Real Functions with 1 DFT

Recall the symmetry properties of the DFT. The DFT of $x[m]=x_r[m]+jx_i[m]$ is defined as

$\displaystyle X[n]={\cal F}[x[m]]$ $\textstyle =$ $\displaystyle \sum_{m=0}^{N-1} x[m]e^{-j2\pi mn/N}=\sum_{m=0}^{N-1} [x_r[m]+jx_i[m]]\;
[\cos(2\pi mn/N)-j\;sin(2\pi mn/N)]$  
  $\textstyle =$ $\displaystyle \sum_{m=0}^{N-1} \left[x_r[m]\cos(\frac{2\pi mn}{N})+x_i[m]\sin\left(\frac{2\pi mn}{N}\right)\right]$  
  $\textstyle +$ $\displaystyle j\sum_{m=0}^{N-1} \left[x_i[m]\cos(\frac{2\pi mn}{N})-x_r[m]\sin\left(\frac{2\pi mn}{N}\right)\right]$  
  $\textstyle =$ $\displaystyle X_r[n]+jX_i[n]$  

where $X_r[n]$ and $X_i[n]$ are two real functions for the real and imaginary parts of the spectrum, respectively. Consider the following two cases:

We note that half of the computation for the DFT of a real-valued signal $x[m]$ is wasted, because

This waste of computation can be avoided by the following algorithm by which the DFTs of two real signals can be obtained by only one DFT.

We first note that an arbitrary function $f(x)$ can be decomposed into the even and odd components $f_e(x)$ and $f_o(x)$:

\begin{displaymath}
f_e(x)=\frac{f(x)+f(-x))}{2}=f_e(-x),\;\;\;\;\;\;\;\; f_o(x)=\frac{f(x)-f(-x))}{2}=-f_o(-x)
\end{displaymath}

and

\begin{displaymath}f_e(x)+f_o(x)=f(x) \end{displaymath}

Now we can show how to obtain the DFT spectra $X_1[n]={\cal F}[x_1[m]]$ and $X_2[n]={\cal F}[x_2[m]]$ of two real functions $x_1[m]$ and $x_2[m]$ by carrying out only one DFT.

  1. Define a complex function $x[m]$ by the two real functions:

    \begin{displaymath}x[m] \stackrel{\triangle}{=}x_1[m]+jx_2[m] \end{displaymath}

    Notice here that we impose $j$ on $x_2[m]$ to make it imaginary.
  2. Obtain the DFT of $x[m]$

    \begin{displaymath}
{\cal F}[x[m]]=X[n]=X_r[n]+jX_i[n]
\end{displaymath}

  3. Separate $X[n]={\cal F}[x[m]]$ into $X_1[n]={\cal F}[x_1[m]]$ and $X_2[n]={\cal F}[x_2[m]]$, based on the symmetry properties discussed previously. Note that $X[-n]=X[N-n]$ because $X[n]$ is a periodic function.


next up previous
Next: Two-Dimensional Fourier Transform (2DFT) Up: fourier Previous: Fast Fourier Transform (FFT)
Ruye Wang 2015-11-12