next up previous
Next: An Example Up: fourier Previous: The function and orthogonal

Matrix form of the DFT

The forward and inverse DFT can be written as:

\begin{displaymath}X[n]=\frac{1}{\sqrt{N}}\sum_{m=0}^{N-1} x[m]e^{-mn j2\pi/N}
...
...0}^{N-1} X[n]e^{mn j2\pi/N}
=\sum_{n=0}^{N-1} w_N^{-mn} X[n] \end{displaymath}


\begin{displaymath}m,n=0, 1, \cdots, N-1 \end{displaymath}

where we have defined

\begin{displaymath}w_{mn}\stackrel{\triangle}{=}\frac{1}{\sqrt{N}}(e^{-j2\pi/N})...
... \;\;\;\;\;\;\;
w_{mn}^*=\frac{1}{\sqrt{N}}(e^{j2\pi/N})^{mn} \end{displaymath}

and $w_{mn}^*$ is its complex conjugate of $w_{mn}$. We can further define an $N \times N$ square matrix

\begin{displaymath}
{\bf W}=\left[{\bf w}_0,\cdots,{\bf w}_{N-1}\right]
=\left...
... . & w_{mn} & . \\
. & . & . \end{array} \right]_{N\times N}
\end{displaymath}

where $w_{mn}$ is the element in the mth row and nth column of ${\bf W}$, and ${\bf w}_n=[w_{0n},\cdots,w_{(N-1)n}]^T$ is the nth column vector of ${\bf W}$. As $w_{mn}=w_{nm}$, ${\bf W}$ is symmetric

\begin{displaymath}{\bf W}^T={\bf W} \end{displaymath}

Also, note that the columns (or rows) of ${\bf W}$ are orthogonal:

\begin{displaymath}
\langle{\bf w}_m, {\bf w}_n\rangle={\bf w}^T_m {\bf w}^*_n
=...
...{\begin{array}{ll}1&\;\;m=n 0&\;\;m\ne n
\end{array} \right.
\end{displaymath}

as Therefore ${\bf W}$ is a unitary matrix, as well and symmetric:

\begin{displaymath}{\bf W}^{*T}={\bf W}^*={\bf W}^{-1} \end{displaymath}

We further represent the discrete signal $x[m]$ and its DFT spectrum $X[n]$ as two N-D vectors:

\begin{displaymath}{\bf X}\stackrel{\triangle}{=}
\left[ \begin{array}{c} X[0] ...
...y}{c} x[0]  . . x[N-1] \end{array}
\right]_{N\times 1}
\end{displaymath}

then the DFT can be written more conveniently as a matrix-vector multiplication:

\begin{displaymath}{\bf X}=\left[ \begin{array}{c} X[0]  . . X[N-1] \end{a...
...{c} x[0]  . . x[N-1] \end{array} \right]
={\bf W}{\bf x}
\end{displaymath}

and

\begin{displaymath}{\bf x}=\left[ \begin{array}{c} x[0]  . . x[N-1] \end{a...
...1] \end{array} \right]
={\bf W}^*{\bf X} ={\bf W}^{-1}{\bf X}
\end{displaymath}

It is obvious that the computational complexity of this 1-D DFT takes is $O(N^2)$, which, as we will see later, can be reduced to $O(N\; log_2 N)$ by Fast Fourier Transform (FFT) algorithms.

See additional geometric explanation of unitary/orthogonal transform.


next up previous
Next: An Example Up: fourier Previous: The function and orthogonal
Ruye Wang 2015-11-12