next up previous
Next: Matrix form of the Up: fourier Previous: Physical Meaning of 1-D

The $\delta$ function and orthogonal bases

The discrete and periodic time function and spectrum can be written as, respectively

\begin{displaymath}x_T(t)=\sum_{m=-\infty}^{\infty} x[m]\delta(t-mt_0) \end{displaymath}


\begin{displaymath}X_F(f)=\sum_{n=-\infty}^{\infty} X[n]\delta(f-nf_0) \end{displaymath}

The $\delta$ function used above satisfies the following:


  1. \begin{displaymath}\delta(t-\tau)=\left\{ \begin{array}{ll} 0 & t\ne \tau \\
\infty & t=\tau
\end{array} \right. \end{displaymath}


  2. \begin{displaymath}\int_{-\infty}^{\infty} \delta(t)dt=1 \end{displaymath}


  3. \begin{displaymath}\int_{-\infty}^{\infty} x(t)\delta(t-\tau)dt=x(\tau) \end{displaymath}



Ruye Wang 2015-11-12