next up previous
Next: Matrix Form of 2D Up: fourier Previous: Two-Dimensional Fourier Transform (2DFT)

Physical Meaning of 2-D FT

Consider the Fourier transform of a continuous but non-periodic signal (the result should be easily generalized to other cases):

\begin{displaymath}
f(x,y)=\int \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(xu+yv)}\; du\;dv
\end{displaymath}

where $u$ and $v$ are the frequencies in the directions of $x$ and $y$, respectively. This double integration is a linear combination, with complex weight $F(u,v)$, of the complex exponential composed of two sinusoidal functions:

\begin{displaymath}e^{j2\pi(xu+yv)}=cos(2\pi(xu+yv))+j\sin(2\pi(xu+yv)) \end{displaymath}

To understand the physical meaning of this 2D Fourier transform, we first consider the complex exponential $e^{j2\pi(xu+yv)}$ and the complex weight $F(u,v)$ separately:

It the 2-D signal $f(x,y)=f_r(x,y)+j f_i(x,y)=f_r(x,y)$ is real, i.e, $f_i(x,y)=0$, then its 2-D Fourier expansion can be written as

$\displaystyle f(x,y)$ $\textstyle =$ $\displaystyle \int \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(xu+yv)}\;du\;dv$  
  $\textstyle =$ $\displaystyle \int \int_{-\infty}^{\infty} \left[ F_r(u,v) \cos(2\pi w {\bf n} \cdot {\bf r})
-F_j(u,v)\sin(2\pi w {\bf n} \cdot {\bf r}) \right] \;du\;dv$  
  $\textstyle =$ $\displaystyle \int \int_{-\infty}^{\infty} \vert F(u,v)\vert
\left[ \cos\angle...
...bf r})
-\sin\angle F(u,v) \sin(2\pi w {\bf n} \cdot {\bf r}) \right]\; du\;dv$  
  $\textstyle =$ $\displaystyle \int \int_{-\infty}^{\infty} \vert F(u,v)\vert\;
\cos [(2\pi w {\bf n}\cdot {\bf r})+\angle F(u,v)]\; du\;dv$  

The 2D Fourier transform represents a real signal $f(x,y)$ as a linear combination (integration) of infinite 2D spatial sinusoids with The amplitude and phase are determined by the complex coefficient $F(u,v)$, while the frequency and direction are determined by the spatial frequencies $u$ and $v$.

Example 0

The 2-D function shown below has three frequency components (2D sinusoidal waves) of different directions:

\begin{displaymath}
f(x,y)=\frac{1}{2} \sin(2\pi (x+2y)/6)+\cos(2\pi (x+y)/6)
+\frac{1}{2}\sin(2\pi (2x+y)/6)
\end{displaymath}

sin_wave.gif

Example 1


\begin{displaymath}f(x,y)=\left\{ \begin{array}{ll} 1 & if\;(-\frac{a}{2}<x<\fra...
...;
-\frac{b}{2}<y<\frac{b}{2})  0 & else \end{array} \right. \end{displaymath}


$\displaystyle F(u,v)$ $\textstyle =$ $\displaystyle \int \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy
= \int_{-a/2}^{a/2} e^{-j2\pi ux}dx \int_{-b/2}^{b/2} e^{-j2\pi vy}dy$  
  $\textstyle =$ $\displaystyle \frac{sin(\pi ua)}{\pi u} \frac{sin(\pi vb)}{\pi v}$  

sinc_2d.gif

Example 2


\begin{displaymath}f(x,y)=\left\{ \begin{array}{ll} 1 & x^2+y^2<R^2 \\
0 & else \end{array} \right. \end{displaymath}

ideal2d.gif

It is more convenient to use polar coordinate system in both spatial and frequency domains. Let


\begin{displaymath}\left\{ \begin{array}{ll} x=r cos\theta, & y=r sin\theta \\
r=\sqrt{x^2+y^2}, & \theta=tan^{-1}(y/x)
\end{array} \right. \end{displaymath}


\begin{displaymath}dx dy=rdr d\theta \end{displaymath}

and

\begin{displaymath}\left\{ \begin{array}{ll} u=\rho cos\phi, & v=\rho sin\phi ...
...\rho=\sqrt{u^2+v^2}, & \phi=tan^{-1}(v/u)
\end{array} \right. \end{displaymath}


\begin{displaymath}du dv=\rho d\rho d\phi \end{displaymath}

we have:


$\displaystyle F(u,v)$ $\textstyle =$ $\displaystyle \int \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy
= ...
...{-j2\pi r\rho(cos \theta cos \phi
+ sin \theta sin \phi)} d\theta \right] r dr$  
  $\textstyle =$ $\displaystyle \int_0^R \left[ \int_0^{2\pi} e^{-j2\pi r\rho cos (\theta-\phi)}
...
...\int_0^R \left[ \int_0^{2\pi} e^{-j2\pi r\rho cos \theta}
d\theta \right] r dr$  

To continue, we need to use 0th order Bessel function $J_0(x)$ defined as

\begin{displaymath}J_0(x)\stackrel{\triangle}{=}\frac{1}{2\pi}\int_0^{2\pi}
e^{-jx cos \theta} d\theta \end{displaymath}

which is related to the 1st order Bessel function $J_1(x)$ by

\begin{displaymath}\frac{d}{dx}(x J_1(x))=x J_0(x) \end{displaymath}

i.e.

\begin{displaymath}\int_0^x x J_0(x) dx=x J_1(x) \end{displaymath}

Substituting $2\pi r \rho$ for $x$, we have

\begin{displaymath}F(u,v)=F(\rho,\phi)=\int_0^R 2\pi r J_0(2\pi r \rho) dr
=\frac{1}{\rho} R J_1(2\pi \rho R) \
\end{displaymath}

We see that the spectrum $F(u,v)=F(\rho,\phi)$ is independent of angle $\phi$ and therefore is central symmetric.

besj12d.gif

Example 3 More 2-D FT examples:

FT2Dexamples.gif

Example 4 2D DFT of an image:

FT2Dpanda.gif FT2Dpanda1.gif


next up previous
Next: Matrix Form of 2D Up: fourier Previous: Two-Dimensional Fourier Transform (2DFT)
Ruye Wang 2015-11-12