next up previous
Next: The AdaBoost Algorithm Up: Bayes Classifier Previous: Error analysis

Some special cases

If $p({\bf x}/\omega_i)$ can be assumed to be a normal distribution, the discriminant function can be written as:

\begin{displaymath}
D_i({\bf x})=P(\omega_i)p({\bf x}/\omega_i)
=P(\omega_i)\; \...
... x}-{\bf m}_i)^T {\bf\Sigma}_i^{-1}({\bf x}-{\bf m}_i)\right]
\end{displaymath}

Since $D_i({\bf x})$ is used only relatively among all classes, it can be replaced by a monotonic log function and the discriminant function becomes
$\displaystyle \log\;D_i({\bf x})$ $\textstyle =$ $\displaystyle \log[ p({\bf x}/\omega_i) P(\omega_i)]
= \log\; p({\bf x}/\omega_i) + log P(\omega_i)$  
  $\textstyle =$ $\displaystyle -\frac{1}{2}({\bf x}-{\bf m}_i)^T{\bf\Sigma}_i^{-1}({\bf x}-{\bf ...
...{2}\;log 2\pi
-\frac{1}{2}\;log \vert{\bf\Sigma}_i \vert + log  P(\omega_i)$  

The second term $-N log 2\pi/2$ is a constant common to all classes and can therefore be dropped and the discriminant function is

\begin{displaymath}
D_i({\bf x})=-\frac{1}{2}({\bf x}-{\bf m}_i)^T\Sigma_i^{-1}(...
...frac{1}{2}\;log \vert{\bf\Sigma}_i \vert + log  P(\omega_i)
\end{displaymath}

This is the most general case and the boundary between any two classes $\omega_i$ and $\omega_j$ is described by $D_i({\bf x})=D_j({\bf x})$, i.e.,

\begin{displaymath}-\frac{1}{2}({\bf x}-{\bf m}_i)^T{\bf\Sigma}_i^{-1}({\bf x}-{...
...\frac{1}{2}\;log \vert{\bf\Sigma}_j \vert + log  P(\omega_j) \end{displaymath}

is a quadric (multi-variable quadratic) equation:

\begin{displaymath}{\bf x}^T{\bf W}{\bf x}+{\bf w}^T{\bf x}+w=0 \end{displaymath}

where ${\bf W}$ is an n by n matrix:

\begin{displaymath}{\bf W}=-\frac{1}{2}({\bf\Sigma}_i^{-1}-{\bf\Sigma}_j^{-1}) \end{displaymath}

${\bf w}$ is an n by 1 vector:

\begin{displaymath}{\bf w}={\bf\Sigma}_i^{-1}{\bf m}_i-{\bf\Sigma}_j^{-1}{\bf m}_j \end{displaymath}

and $w$ is a scalar:

\begin{displaymath}w=-\frac{1}{2}({\bf m}_i^T{\bf\Sigma}^{-1}{\bf m}_i-{\bf m}_j...
...vert{\bf\Sigma}_j\vert}
+log \frac{P(\omega_i)}{P(\omega_j)}
\end{displaymath}

These boundaries in the N-D feature space are in general quadric hyper-surfaces, such as hyper-sphere, hyper-ellipsoid, hyper-parabola, hyper-hyperbola, etc.

Now consider several special cases:


next up previous
Next: The AdaBoost Algorithm Up: Bayes Classifier Previous: Error analysis
Ruye Wang 2016-11-30