next up previous
Next: Generalized Hough transform Up: hough Previous: Detection of Circles

Detection of Ellipses

Here we assume the axes of the ellipses are in parallel with the coordinates of the image space, i.e., the equations specifying the ellipses are in the following standard form

\begin{displaymath}f(x,y,x_0,y_0,a,b)=\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}-1=0 \end{displaymath}

where $x_0$, $y_0$, $a$ and $b$ are four parameters which span a 4D parameter Hough space. To use $\angle G$, consider

\begin{displaymath}\frac{dy}{dx}=-\frac{f'_x(x,y)}{f'_y(x,y)}=-\frac{(x-x_0)/a}{(y-y_0)/b} \end{displaymath}

Now we only need to increment those elements in the parameter space that satisfy both of the following equations

\begin{displaymath}
\left\{ \begin{array}{l}
(x-x_0)^2/a^2+(y-y_0)^2/b^2-1=0 \\
(x-x_0)b/(y-y_0)a=cot\;\angle G
\end{array} \right.
\end{displaymath}

Solving these equations for $x_0$ and $y_0$, we get

\begin{displaymath}
\left\{ \begin{array}{l} x_0=x \pm a\;cos\;\angle G \\
y_0=y \pm b\;sin\;\angle G
\end{array} \right.
\end{displaymath}

and the algorithm for detecting circles:


next up previous
Next: Generalized Hough transform Up: hough Previous: Detection of Circles
Ruye Wang 2009-11-17