next up previous
Next: The Twin-T notch (band-stop) Up: Chapter 6: Active Filter Previous: First and Second Order

The Sallen-Key filters

The Sallen-Key filters are second-order active filters (low-pass, high-pass, and band-pass) that can be easily implemented using the configuration below:

SallenKey.gif

We represent all voltages in phasor form. Due to the virtual ground assumption, $V_b\approx V_{out}$ at non-inverting input is virtually the same as that at the inverting input, which is connected to the output $V_{out}$. Applying KCL to nodes a and b to get:

\begin{displaymath}
\frac{V_a-V_{in}}{Z_1}+\frac{V_a-V_{out}}{Z_3}+\frac{V_a-V_{...
...{Z_1}+(V_a-V_{out})\left(\frac{1}{Z_3}+\frac{1}{Z_2}\right)=0
\end{displaymath}

and

\begin{displaymath}
\frac{V_{out}-V_a}{Z_2}+\frac{V_{out}}{Z_4}=0,
\end{displaymath}

The second equation can also be written as

\begin{displaymath}
V_a-V_{out}=V_{out}\frac{Z_2}{Z_4}, \;\;\;\;\;\;\;V_a=V_{out}\frac{Z_2+Z_4}{Z_4}
\end{displaymath}

Substituting these into the first equation we get

\begin{displaymath}
V_{out}\;\left(\frac{Z_2+Z_4}{Z_1Z_4}+\frac{Z_2}{Z_3Z_4}+\frac{Z_2}{Z_2Z_4} \right)
=\frac{V_{in}}{Z_1}
\end{displaymath}

Now the frequency response of the Sallen-Key filter can be found as the ratio of $V_{out}$ and $V_{in}$:
$\displaystyle H$ $\textstyle =$ $\displaystyle \frac{V_{out}}{V_{in}}=\frac{Z_3Z_4}{Z_1Z_2+Z_1Z_3+Z_2Z_3+Z_3Z_4}$  

We further consider a band-pass filter shown below:

SallenKeyBP.png

By voltage divider and virtual ground, we get

\begin{displaymath}
V_2=\frac{R_a}{R_a+R_b}V_{out}=kV_{out},\;\;\;\;\;\;\;\left(k=\frac{R_a}{R_a+R_b}\right)
\end{displaymath}

Apply KCL to node $V_2$ to get:

\begin{displaymath}
\frac{V_1-V_2}{Z_2}=\frac{V_2}{Z_4},\;\;\;\;\;\;\;\mbox{i.e...
...}+\frac{1}{Z_4}\right)Z_2
=V_2\left(1+\frac{Z_2}{Z_4}\right)
\end{displaymath}

Apply KCL to node $V_1$ to get:

\begin{displaymath}
\frac{V_{in}-V_1}{Z_1}+\frac{V_{out}-V_1}{R_f}+\frac{V_2-V_1}{Z_2}
=\frac{V_1}{Z_3}
\end{displaymath}

Rearrange the terms, and replace $V_1$ by $V_2(1+Z_2/Z_4)$ to get
    $\displaystyle \frac{V_{in}}{Z_1}+\frac{V_{out}}{R_f}+\frac{V_2}{Z_2}
=V_1\left(\frac{1}{Z_1}+\frac{1}{R_f}+\frac{1}{Z_2}+\frac{1}{Z_3}\right)$  
  $\textstyle =$ $\displaystyle V_2\left(1+\frac{Z_2}{Z_4}\right)\left(\frac{1}{Z_1}
+\frac{1}{R_f}+\frac{1}{Z_2}+\frac{1}{Z_3}\right)$  

Further rearrange the terms and replace $V_2$ by $kV_{out}$ to get

\begin{displaymath}
\frac{V_{in}}{Z_1}+\frac{V_{out}}{R_f}
=kV_{out}\left[\lef...
..._f}
+\frac{1}{Z_2}+\frac{1}{Z_3}\right)-\frac{1}{Z_2}\right]
\end{displaymath}

Further rearrange the terms
$\displaystyle \frac{V_{in}}{Z_1}$ $\textstyle =$ $\displaystyle kV_{out}\left[\left(1+\frac{Z_2}{Z_4}\right)
\left(\frac{1}{Z_1}
...
..._f}+\frac{1}{Z_2}+\frac{1}{Z_3}\right)-\frac{1}{Z_2}\right]-\frac{V_{out}}{R_f}$  
  $\textstyle =$ $\displaystyle V_{out}\left\{k\left[\left(1+\frac{Z_2}{Z_4}\right)\left(\frac{1}...
...}+\frac{1}{Z_2}+\frac{1}{Z_3}\right)-\frac{1}{Z_2}\right]-\frac{1}{R_f}\right\}$  

Finally we get the frequency response function:
$\displaystyle H=\frac{V_{out}}{V_{in}}$ $\textstyle =$ $\displaystyle \frac{1}{Z_1\left\{k\left[\left(1+\frac{Z_2}{Z_4}\right)\left(\fr...
...+\frac{1}{Z_2}+\frac{1}{Z_3}\right)-\frac{1}{Z_2}\right]-\frac{1}{R_f}\right\}}$  
  $\textstyle =$ $\displaystyle \frac{1/k}{Z_1\left[\left(1+\frac{Z_2}{Z_4}\right)\left(\frac{1}{...
...{R_f}+\frac{1}{Z_2}+\frac{1}{Z_3}\right)-\frac{1}{Z_2}\right]-\frac{Z_1}{kR_f}}$  
  $\textstyle =$ $\displaystyle \frac{1/k}{1+\frac{Z_1}{R_f}+\frac{Z_1}{Z_3}+\frac{Z_2}{Z_4}+\frac{Z_1Z_2}{Z_4R_f}+\frac{Z_1}{Z_4}+\frac{Z_1Z_2}{Z_3Z_4}-\frac{Z_1}{kR_f}}$  

If we let

\begin{displaymath}
Z_1=R_1,\;\;\;\;\;Z_4=R_2,\;\;\;\;Z_2=\frac{1}{j\omega C_2},
\;\;\;\;Z_3=\frac{1}{j\omega C_1}
\end{displaymath}

the frequency response function becomes
$\displaystyle H$ $\textstyle =$ $\displaystyle \frac{\left(1+\frac{R_b}{R_a}\right)\frac{1}{R_1C_1}j\omega}{(j\o...
...1}{R_1C_1}-\frac{R_b}{R_aR_fC_1}\right)j\omega+\frac{R_1+R_f}{R_fR_1R_2C_1C_2}}$  
  $\textstyle =$ $\displaystyle \frac{Aj\omega}{(j\omega)^2+\Delta\omega j\omega+\omega_n^2},
\;\;\;\;\;\;\;\;\;
A=(1+R_b/R_a)/R_1C_1$  

This is a band-pass filter with the peak frequency equal to the natural frequency:

\begin{displaymath}
\omega_n=\sqrt{\frac{R_1+R_f}{R_fR_1R_2C_1C_2}}
\end{displaymath}

the bandwidth

\begin{displaymath}
\Delta\omega=\frac{1}{R_2C_1}+\frac{1}{R_2C_2}+\frac{1}{R_1C_1}-\frac{R_b}{R_aR_fC_1}
\end{displaymath}

The gain of the filter is controlled by $1+R_b/R_a$.

More Examples of op-amp filters are listed below (with detailed analysis in here):


next up previous
Next: The Twin-T notch (band-stop) Up: Chapter 6: Active Filter Previous: First and Second Order
Ruye Wang 2019-05-07