next up previous
Next: About this document ... Up: DEsystem Previous: Stability Analysis of Nonlinear

Phase Plane

Consider a first order LCCODE system containing $n=2$ variables:

\begin{displaymath}
\dot{\bf x}=\left[\begin{array}{c}\dot{x}_1 \dot{x}_2\end{...
...gin{array}{c}\dot{x}_1 \dot{x}_2\end{array}\right]
={\bf Ax}
\end{displaymath}

The general solution is

\begin{displaymath}
{\bf x}=c_1e^{\lambda_1t}{\bf v}_1+c_2e^{\lambda_2t}{\bf v}_2
\end{displaymath}

where $\lambda_i$ and ${\bf v}_i$ are the eigenvalue and corresponding eigenvectors of ${\bf A}$ satisfying ${\bf Av}_i=\lambda_i{\bf v}_i$. Specifically, these eigenvalues can be found by solving the following characteristic polynomial:

\begin{displaymath}
\det(\lambda{\bf I}-{\bf A})=(\lambda-a_{11})(\lambda-a_{22}...
...
=\lambda^2-(a_{11}+a_{22})\lambda+a_{11}a_{22}-a_{12}a_{21}=0
\end{displaymath}

where $a_{11}+a_{22}=tr({\bf A})$ and $a_{11}a_{22}-a_{12}a_{21}=det({\bf A})$ are the trace and determinant of ${\bf A}$ respectively. Solving the equadratic equation, we get the two roots:

\begin{displaymath}
\lambda_{1,2}=\frac{1}{2}(a_{11}+a_{22}\pm \sqrt{\Delta})
=\frac{1}{2}(a_{11}+a_{22} \pm j \sqrt{-\Delta})
\end{displaymath}

where $\Delta=(a_{11}+a_{22})^2-4(a_{11}a_{22}-a_{12}a_{21})$.


\begin{displaymath}
\left[\begin{array}{rr}6&2\\ 3&7\end{array}\right],\;\;\;
\l...
...],\;\;\;
\left[\begin{array}{rr}-5&-2\\ 4&-3\end{array}\right]
\end{displaymath}


\begin{displaymath}\begin{array}{c\vert\vert c\vert c\vert c\vert c\vert c\vert ...
...3.5\pm j\,4.0 & 0\pm j\,4.0 & -4\pm j\,2.7\\ \hline
\end{array}\end{displaymath}

phasePlane1.png

  1. $\lambda_1>0,\;\lambda_2 > 0$ unstable
  2. $\lambda_1>0,\;\lambda_2 < 0$ saddle point
  3. $\lambda_1<0,\;\lambda_2 < 0$ stable
  4. $\lambda=a\pm j\,b,\\ ;\;a>0$ unstable, spiral out
  5. $\lambda=a\pm j\,b,\\ ;\;a=0$ marginal stable
  6. $\lambda=a\pm j\,b,\\ ;\;a<0$ stable, spiral in



Ruye Wang 2019-02-21