next up previous
Next: The sampling theorem Up: No Title Previous: Fourier expansion and Fourier

The comb function and its spectrum

The comb (or sampling) function is a sequency of infinite delta impulses uniformly distributed in time (or space):

\begin{displaymath}p(t)=\sum_{m=-\infty}^{\infty} \delta(t-m T_s) \end{displaymath}

where Ts is the interval between two neighboring impulses, and fs = 1/Ts is the sampling rate.

As p(t) is periodic (period Ts), it can be Fourier expanded:

\begin{displaymath}p(t)=\sum_{n=-\infty}^{\infty} P(n)e^{j2\pi nf_s t} \end{displaymath}

where the expansion coefficients are


P(n) = $\displaystyle \frac{1}{T_s} \int_{-T_s/2}^{+T_s/2} x_{T_s}(t) e^{-j2\pi nf_s t} dt$  
  = $\displaystyle \frac{1}{T_s} \int_{-T_s/2}^{+T_s/2} [\sum_{m=-\infty}^{\infty} \delta(t-m T_s) ] e^{-j2\pi nf_s t} dt$  
  = $\displaystyle \frac{1}{T_s} \int_{-T_s/2}^{+T_s/2} \delta(t) e^{-j2\pi nf_s t} dt
= \frac{1}{T_s} e^{0} =\frac{1}{T_s}\;\;\;\;\;\;(n=0, \pm 1, \pm 2, \cdots)$  

Now the expression for p(t) can be written as:

\begin{displaymath}p(t)=\sum_{m=-\infty}^{\infty} \delta(t-m T_s) =
\sum_{n=-\i...
... t}
=\frac{1}{T_s} \sum_{n=-\infty}^{\infty} e^{j2\pi nf_s t} \end{displaymath}

Again, the coefficients can be considered as the discrete, non-periodic spectrum of the comb function:


\begin{displaymath}P(f)=\sum_{n=-\infty}^{\infty} P(n)\delta(f-nf_s) =
\frac{1}{T_s}\sum_{n=-\infty}^{\infty} \delta(f-nf_s) \end{displaymath}

Note that the interval between two neighboring impulses is the sampling rate fs=1/Ts. That is, high sampling rate (small interval between two neighboring sampling impulses) of p(t) corresponds to large gap Ts in it spectrum.


next up previous
Next: The sampling theorem Up: No Title Previous: Fourier expansion and Fourier
Ruye Wang
1999-09-28