next up previous
Next: The Principal Component Transform Up: pca Previous: Multivariate Random Signals

Covariance and Correlation

The mean and the variance of two variables $x$ and $y$ can be estimated by averaging the outcomes of the random experiment concerning the variables repeated $K$ times:

\begin{displaymath}\hat{\mu}_x=\frac{1}{K}\sum_{i=1}^K x_i,\;\;\;\;
\hat{\sigma}^2_{x}=\frac{1}{K}\sum_{i=1}^K (x_i-\hat{\mu}_x)^2 \end{displaymath}


\begin{displaymath}\hat{\mu}_y=\frac{1}{K}\sum_{i=1}^K y_i,\;\;\;\;
\hat{\sigma}^2_{y}=\frac{1}{K}\sum_{i=1}^K (y_i-\hat{\mu}_y)^2 \end{displaymath}

and their covariance can be estimated as

\begin{displaymath}\hat{\sigma}^2_{xy}=\frac{1}{K}\sum_{i=1}^K (x_i-\hat{\mu}_x)(y_i-\hat{\mu}_y) \end{displaymath}

Examples

Consider the following examples showing the covariance $\sigma_{xy}$ between two random variables $x$ and $y$ under various situations.


next up previous
Next: The Principal Component Transform Up: pca Previous: Multivariate Random Signals
Ruye Wang 2004-09-29