next up previous
Next: Subband Coding Up: filterbank Previous: filterbank

Preparation: the Z-Transform

The Z-transform of a discrete signal $x[n]$ is defined as

\begin{displaymath}X(z)={\cal Z}(x[n])=\sum_{n=-\infty}^\infty x[n] z^{-n} \end{displaymath}

In case you are not familiar with Z-transform, recall discrete Fourier transform:

\begin{displaymath}X(j\omega)=\sum_{n=-\infty}^\infty x[n] e^{-j\omega n} \end{displaymath}

If we define $z=e^{j\omega}$, the discrete Fourier transform becomes Z-transform defined above.

Example 1: The autocorrelation of a signal $x[n]$

\begin{displaymath}\sum_k x[k] x[k-n] \end{displaymath}

can be viewed as the convolution of $x[n]$ with its time reversed version. Therefore the z-transform of the autocorrelation is

\begin{displaymath}{\cal Z}[\sum_k x[k] x[k-n]]]=X(z)X(z^{-1}) \end{displaymath}

Example 2:

When a signal $x[n]$ is first down-sampled and then up-sampled to become $x'[n]$, its z-transform becomes:

\begin{displaymath}X'(z)=\frac{1}{2}[X(z)+X(-z)] \end{displaymath}

As

\begin{displaymath}
X(-z)=\sum_{n=-\infty}^\infty x[n] (-z)^{-n}=\sum_{n=-\infty}^\infty (-1)^n x[n] z^{-n}
\end{displaymath}

the inverse z-transform of $X(-z)$ is

\begin{displaymath}{\cal Z}^{-1} X(-z)=(-1)^n x[n] \end{displaymath}

and

\begin{displaymath}x'[n]={\cal Z}^{-1} X'(z)=\frac{1}{2}[{\cal Z}^{-1} X(z)+{\ca...
... & \mbox{even}\; n \\
0 & \mbox{odd}\; n \end{array} \right.
\end{displaymath}

down_up_sampling.gif


next up previous
Next: Subband Coding Up: filterbank Previous: filterbank
Ruye Wang 2007-10-01