next up previous
Next: Suboptimal feature selection Up: Feature Selection Previous: Optimal transformation for maximizing

Information conservation in feature selection

The percentage of separability information (energy) contained in the m-D space after feature selection can be found as

\begin{displaymath}
r=\frac{\sum_{i=1}^m {\bf a}_i^T{\bf S}_{B/W}{\bf a}_i}{\sum...
...^m {\bf a}_i^T{\bf S}_{B/W}{\bf a}_i}{\sum_{i=1}^n \lambda_i}
\end{displaymath}

where $\lambda_i$'s are the eigenvalues of ${\bf S}_{B/W}$. When KLT is used, the above can be further written as

\begin{displaymath}
r= \frac{\sum_{i=1}^m \phi_i^T{\bf S}_{B/W}\phi_i}{\sum_{i=1...
...bda_i}
=\frac{\sum_{i=1}^m \lambda_i}{\sum_{i=1}^n \lambda_i}
\end{displaymath}

as here ${\bf a}_i={\bf\phi}_i\;\;\;(i=1,\cdots,m)$ are the eigenvectors of ${\bf S}_{B/W}$ (corresponding to the m largest eigenvalues $\lambda_i\;\;\;(i=1,\cdots,m)$).



Ruye Wang 2016-11-30