next up previous
Next: Positive/Negative (semi)-definite matrices Up: algebra Previous: Inner Product Space

Rank, trace, determinant, transpose, and inverse of matrices

Let ${\bf A}$ be an $m\times n$ square matrix:

\begin{displaymath}
{\bf A}=[{\bf a}_1,\cdots,{\bf a}_n]=\left[ \begin{array}{c...
...\
a_{m1} & \cdots & a_{mn}
\end{array} \right]_{m\times n}
\end{displaymath}

where

\begin{displaymath}
{\bf a}_j=\left[ \begin{array}{c} a_{1j} \vdots a_{mj} \end{array}\right],
\;\;\;\;\;\;\;\;(j=1,\cdots,n)
\end{displaymath}

is the jth column vector and $[a_{i1}\;\cdots\;a_{in}]$ is the ith row vector ($i=1,\cdots,m$). If $m=n$, ${\bf A}$ is a square matrix. In particular, if all entries of a square matrix are zero except those along the diagonal, it is a diagonal matrix. Moreover, if the diagonal entries of a diagonal matrix are all one, it is the identity matrix:

\begin{displaymath}
{\bf I}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 0 & ...
...\vdots & & \ddots & 0 0 & \cdots & 0 & 1
\end{array}\right]
\end{displaymath}


next up previous
Next: Positive/Negative (semi)-definite matrices Up: algebra Previous: Inner Product Space
Ruye Wang 2015-04-27