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Data Analysis, Standard Error, and Confidence Limits 
E80 Spring 2015 Notes 

 

We Believe in the Truth 

We frequently assume (believe) when making measurements of something (like the 
mass of a rocket motor) that there is a true value, µ, of the measurement and that 
each individual measurement has some random error in it. We further assume 
(believe) that the true measurement lies at the center of a distribution of the noisy 
measurements, and that the distribution is normal (Gaussian) with a true standard 
deviation of σ .  

Guiding Questions 

This lecture addresses several questions: 

1) If I take a set of noisy measurements, what can I say about the probability 
that the true value is within a certain range? 

2) How do I best fit a straight line to a series of noisy (x,y) measurements, and 
what can I say about the uncertainty in this fit? 

3) If I compute a function of noisy data, what can I say about the uncertainty of 
the function? In other words, how do I propagate the error? 

4) If my measurement instrument has finite resolution, how does that affect the 
uncertainty? 

Sample Mean of a Set of Measurements 

For a set of  N measurements 

    x1
,x

2
,!,x

N
, 

we can calculate the sample mean, 

 
  
x = 1

N
x

i
i=1

N

∑ , 

which we use as an estimate of the true value of the measured quantity, µ. If we 
knew the true value, we could calculate the error in each measurement as 

  εi
= x

i
− µ . 

However, since we don’t know the true value, but only the sample mean, we can 
calculate the residuals 

  ei
= x

i
− x . 

Because our mean depends on our measurements, only   N −1  of our residuals are 
independent. We have lost a degree of freedom in calculating our residuals, rather 
than our errors. 
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We can characterize our residuals with the sample variance and sample standard 
deviation. The sample variance is 
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The last form is useful for calculations. The sample standard deviation is 

   S = S2 . 

The sample standard deviation is an estimate of σ , the true spread of the 
distribution of the measurements, but it doesn’t relate directly to how far the 
sample mean is from the true value. That distance is related to the Standard Error, 
which in turn relates to the true standard deviation by 

 
 
SE = σ

N
. 

Since we believe in σ, but usually don’t have a way to determine σ, we’ll use S and 
the Estimated Standard Error, 

  
ESE = S

N
. 

For a set of measurement with sufficient individual measurements, the probability 
that the true value of the measurement is within a given range of the sample mean 
follows the normal distribution with the estimated standard error replacing the 
sample standard deviation, e.g., for a sample mean of 42.000 and a sample standard 
deviation of 0.100 in a set of 200 measurements, the estimated standard error is 

 
  
ESE = S

N
= 0.100

200
= 0.0071 . 

The likely range of the true value relative to the sample mean is usually reported as 
a confidence interval, e.g.,  

 
  
x = 42.000 ± 0.007 68%confidence interval( ) , 

which means that we are 68-percent certain that µ is within ±0.007 of 42.000. 

The confidence interval is usually calculated by multiplying the estimated standard 
error by a constant related to the area under a standard normal curve, 

 
ESE × k( ) . 

For example, if we had sufficient measurements (and the 200 above qualifies), and 
we wanted a 95% confidence interval, the fraction of the area under a standard 
normal curve from  −1.96  to  +1.96 is 95%, so one would commonly calculate 

 
  
x = 42.000 ± 0.0071×1.96 = 42.000 ± 0.014 95%confidence( ) . 
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However, as the number of measurements decreases, the normal distribution 
under-reports the uncertainty. One must use the Student’s (W.S. Gossett) t-value to 
accurately estimate the confidence interval. The confidence interval, ±λ , is given by 

 
 
λ = tESE = tS

N
, 

and  t is the Student’s t-value determined given the degrees of freedom and the 
desired confidence limit. A portion of the two-tailed table follows: 

 SIGNIFICANCE LEVEL FOR TWO-TAILED TEST 
df .20 .10 .05 .02 .01 .001 
1 3.078 6.314 12.706 31.821 63.657 636.619 
2 1.886 2.920 4.303 6.965 9.925 31.598 
3 1.638 2.353 3.182 4.541 5.841 12.941 
4 1.533 2.132 2.776 3.747 4.604 8.610 
5 1.476 2.015 2.571 3.365 4.032 6.859 

10 1.372 1.812 2.228 2.764 3.169 4.587 
20 1.325 1.725 2.086 2.528 2.845 3.850 
30 1.310 1.697 2.042 2.457 2.750 3.646 
40 1.303 1.684 2.021 2.423 2.704 3.551 
60 1.296 1.671 2.000 2.390 2.660 3.460 

120 1.289 1.658 1.980 2.358 2.617 3.373 
∞ 1.282 1.645 1.960 2.326 2.576 3.291 

 

For the example above, if we only had 11 measurements with the same sample 
mean of 42.000 and sample standard deviation of 0.100, the degrees of freedom 
would be   df = N −1 =11−1 =10  and the value of  t for 95% confidence (5% 
significance) would be 2.228 as opposed to 1.960 for the normal distribution and 

 
  
λ = tESE = tS

N
= 2.228

0.100

11
= 2.228 0.030( ) = 0.067 , 

and we would report 

 
  
x = 42.000 ± 0.067 95%confidence( ) . 
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A subtlety that often escapes students is that ±λ  is the uncertainty in the average 
or sample mean of the measurements, but the uncertainty in any individual 
measurement is governed by S, the sample standard deviation. This difference is 
even more important in linear regression. 

EXAMPLE: Five poorly trained judges measure an Olympic sprinter’s 100 meter 
dash time to be 9.80, 9.70, 9.73, 9.68, and 9.72 seconds.  Assume the measurement 
errors are random.  What is the 98% confidence interval for the runner’s actual 
time? 

SOLUTION: The measurements have a sample mean of  

  
x = 1

N
x

i
i=1

N

∑ = 9.80+9.70+9.73+9.68+9.72
5

= 9.726 s  

and a sample standard deviation of 

  
S = 1

N −1
x

i
2

i=1

N

∑ − N x 2( )⎡

⎣
⎢

⎤

⎦
⎥ =

9.802 + 9.702 + 9.732 + 9.682 + 9.722 − 5× 9.7262

4
= 0.0456 s

 

Hence, the estimated standard error is 

  
ESE = S

N
= 0.0456

5
= 0.0204 s

 

Because the number of measurements is small, we use the Student’s t-value to find 
a 98% confidence interval (2% significance, df = 4) to have t = 3.747.  The confidence 
interval is 

 λ = 3.747× 0.0204 = 0.0764 s  

and the confidence interval is 

 

These judges aren’t much good and it’s impossible to tell with confidence if the 
runner beat Usain Bolt’s 2008 Olympic record of 9.69 s. 

EXAMPLE: Some better judges make random measurement errors with a standard 
deviation of σ = 0.02 s.  How many judges are needed to provide a sample mean 
time with a 98% confidence interval of less than ±0.01 s? 

SOLUTION: Solve 
  
λ = tσ

N
= 0.01   

for 
  
N = tσ

0.01

⎛

⎝⎜
⎞

⎠⎟

2

= 4t2   

  x = 9.726 ± λ = 9.65 s to 9.80 s
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Observe from the table that t is approximately 2.5 for 98% confidence (2% 
significance) at moderately large df.  Substitute to find N = 25 judges are needed. 

Linear Regression 

For a set of  N measurement pairs, 
   
x

1
,y

1( ), x
2
,y

2( ),!, x
N

,y
N( ) , we can assume that 

the measurements are linearly related by a function of the form 

   yi
= β

0
+ β

1
x

i
+ ε

i
, 

where the error,  εi
, is the difference between the true value of  yi

and the measured 

value of  yi
.  xi

 is assumed to either be known exactly, or to contain much less error 

than  yi
. 

 
  
ε

i
= y

i
− y

i true( ) = y
i
− β

0
+ β

1
x

i( ) . 
The true values of the set of y ’s and the true values of  β0

and  β1
are most likely 

unknown, so we will again work with the residuals: 

   ŷi
= β̂

0
+ β̂

1
x

i
, 

and 

   yi
= β̂

0
+ β̂

1
x

i
+ e

i
, 

where 

 
  
e

i
= y

i
− ŷ

i
= y

i
− β̂

0
+ β̂

1
x

i( ) . 
And the circumflex (^) indicates an estimated value, just as  x  is an estimate for µ 
and S is an estimate for σ. The most common form of linear regression involves 
minimizing the Sum of the Squared Residuals ( SSE ). 

 
  
SSE = e

i
2

i=1

N

∑ = y
i
− β̂

0
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1
x
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. 

The results of the minimization (the derivation of which can be found many places) 
are 

 

  

β̂
1
=

x
i
− x( ) y

i
− y( )

i=1

N

∑

x
i
− x( )2

i=1

N

∑
, 

and 
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   β̂0
= y − β̂

1
x , 

where  x and  y are the usual means. 

The equivalent of the sample standard deviation for linear regression is the Root 
Mean Squared Residual (RMSE) or  Se

. 

 
  
S

e
= SSE

N − 2
=

e
i
2

i=1

N

∑
N − 2

. 

The   N − 2 in the denominator comes from the fact that we have lost two degrees of 
freedom in our residuals because we calculated both  β̂0

and  β̂1
from our data. 

The sample standard error for  β̂0
is similar to the sample standard error for a single 

parameter but has a term to account for the linear fit 

 

  

Sβ0
= S

e

1
N

+ x 2

(x
i
− x )2

i=1

N

∑
. 

The expression for 
  
Sβ1

just has a term for the linear fit 

 

  

Sβ1
= S

e

1

(x
i
− x )2

i=1

N

∑
. 

As before, one must use the Student’s (W.S. Gossett) t-value to accurately estimate 
the confidence intervals for both  β̂0

and  β̂1
. The confidence interval, 

 
±λβ0

, is given 

by 

 
  
λβ0

= tSβ0
, 

and 
 
±λβ1

by 

 
  
λβ1

= tSβ1
. 

However, the degrees of freedom used in the table,   df = N − 2 , as explained above. 

Sometimes, after calculating the linear fit, one wants to know the confidence 
interval in  y calculated for a specific  x , 

 
±λ

y
. The sample standard error for  y  is 

given by 
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S
y
= S

e

1
N

+
x − x( )2

x
i
− x( )2

i=1

N

∑
 

And the confidence interval as 

 
λ

y
= tS

y
. 

This calculation gives you the confidence interval for the calculated average  y  if you 
set the experiment to  x  and repeated the measurement a number of times. Note 
that this question is very different than asking what the spread of measured values 
would be for  y  if you set the experiment to  x  and repeated the measurement a 
number of times. 

For generalized least-square parameter estimations, there are equivalent 
expressions that either can be derived from first principles, or found in the statistics 
literature. 

EXAMPLE: The Dean of Students randomly queried five students about their sleep 
habits and matched them against GPA to obtain the following table: 

Average Sleep (Z) (Hours) GPA 

7.5 3.70 

4 3.10 

6 3.32 

5 2.98 

8 3.68 

Develop a linear fit for the GPA as a function of sleep.  What is the standard error 
in the slope and y-intercept?  What is the average GPA of a student who sleeps 7 
hours a night, expressed as an interval with a confidence of 80%?   

SOLUTION: The average sleep is  x  = 6.1 hours and the average GPA is  y = 3.56. 

Using the least squares formula, the best fit is  β̂1
= 0.183  and  β̂0

= 2.238 , or GPA = 
2.238 + 0.183Z. This exactly matches Excel’s linear fit shown below.  
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The root mean square residual is 0.136.  The sample standard errors are quite 
large: 

  
Sβ0

= 0.255  and 
  
Sβ1

= 0.0407 . The 80% confidence interval is found with df = 3 as 

t=1.638; hence, GPA = [1.82-2.66]+ [0.117-0.250]Z. *** meaning 

A student sleeping 7 hours per night has a predicted GPA of 2.238 + 0.183*7 = 
3.519. The mean sample standard error for a student sleeping 7 hours a night is 
0.071 and thus the confidence interval is ±0.116, meaning that with 80% confidence, 
the average GPA of a batch of students who sleep 7 hours per night is in the 
interval of [3.40 – 3.64]. 

Propagation of Errors 

Often one needs to calculate a quantity based on several other measured quantities. 
The question arises: How do errors in the other measured quantities affect the 
calculated quantities. In particular, assume you have a function 

    F = F(x,y,z,!) . 

How do you calculate the uncertainty or confidence interval in  F given the 
uncertainties or confidence intervals in    x,y,z,!? 

Assume that the residuals are a reasonable approximation for the errors and that 
the errors are small. Then we can do a Taylor-series expansion of  F about the true 
values of the variables, and only keep the first-order terms 

 
  
F − F

true
= ∂F

∂x
x − x

true( ) + ∂F
∂y

y − y
true( ) + ∂F

∂z
z − z

true( ) +! . 

With the approximate substitution  εx
= x − x

true
, etc. we have 

y	
  =	
  0.1832x	
  +	
  2.2384	
  
R²	
  =	
  0.87124	
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ε

F
= ∂F

∂x
ε

x
+ ∂F
∂y

ε
y
+ ∂F
∂z

ε
z
+! . 

If the errors are systematic, known, and small (so that the linear approximations 
are accurate) the above expression complete with the algebraic signs on the 
derivatives will permit one to calculate the error in  F fairly accurately. 

However, the more common case is that the errors are random variables, and one 
makes the assumptions that the errors are uncorrelated, i.e., for a set of data

 
ε

xi

,
 
ε

yi

, 

and 
 
ε

zi

are completely independent of each other. In such a case the uncertainties 

add in a Root-Sum-of-Squares sense 

 
   
ε

F
= ∂F

∂x

⎛

⎝⎜
⎞

⎠⎟

2

ε
x

2 + ∂F
∂y

⎛

⎝⎜
⎞

⎠⎟

2

ε
y

2 + ∂F
∂z

⎛

⎝⎜
⎞

⎠⎟

2

ε
z
2 +! . 

An example will help to clarify the use of the equations: Suppose we want to 
calculate the resistance of an unknown resistor, RT, which is the bottom half of a 
voltage divider with known resistor R1 on top, and measured input and output 
voltages Vin and Vout. The equation for the resistance of RT is 

 
  
R

T
=

R
1
V

out

V
in
−V

out

. 

The desired expansion is (using a differential for the Taylor series) 

  

dR
T
=
∂R

T

∂R
1

dR
1
+
∂R

T

∂V
in

dV
in
+
∂R

T

∂V
out

dV
out

=
V

out

V
in
−V

out

dR
1
+

−R
1
V

out

V
in
−V

out( )2
dV

in
+

R
1
V

in

V
in
−V

out( )2
dV

out

. 

 
Assuming the residuals are good estimates for errors and that the errors are small 

 

  

e
RT

=
V

out

V
in
−V

out

e
R1
+

−R
1
V

out

V
in
−V

out( )2
e

Vin

+
R

1
V

in

V
in
−V

out( )2
e

Vout

. 

If we knew the exact small values for the residuals, we could use the equation as is, 
but if we wanted to use the Standard Deviations, Standard Errors, or Confidence 
Intervals, and we can assume they are uncorrelated, we would add them in the RSS 
sense 
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e
RT

=
V

out
2

V
in
−V

out( )2
e

R1

2 +
R

1
2V

out
2

V
in
−V

out( )4
e

Vin

2 +
R

1
2V

in
2

V
in
−V

out( )4
e

Vout

2 . 

To be explicit, the  e ’s are replaced by the standard deviation, the standard error, or 
the confidence interval as appropriate. As a numerical example, assume R1 is a 20 
kΩ ± 1% resistor and Vin and Vout are both measured by a fully-accurate 12-bit DAQ 
set to a ±5 V range. The smallest resolvable voltage in a DAQ is the range divided 
by the number of distinct values, which is calculated as 

 
10V

1
212

= 10V
4096

= 0.027V . 

The uncertainty in an individual voltage measurement is ±1/2 LSB (Least 
Significant Bit) or 

 

±0.027V
2

= ±0.013V . 

If   Vin
= 3.000 ± 0.013V  and   Vout

=1.000 ± 0.013V , then the uncertainty in RT is 

  

e
RT

=
1 2

3−1( )2
200Ω 2 +

20kΩ 21 2

3−1( )4
0.013 2 +

20kΩ 23 2

3−1( )4
0.013 2 = 230Ω  

The calculated value of RT with the uncertainty is 

   
R

T
=

R
1
V

out

V
in
−V

out

= 20kΩ i1.000
3.000−1.000

=10.00kΩ ± 0.23kΩ . 

Often a simplification of the error formula will aid in the calculation. In our 
example, we can substitute RT in the error formula: 

  

e
RT

=
R

T

R
1

e
R1
+

−R
T

V
in
−V

out( ) e
Vin

+
R

T

V
in

V
out

⎛

⎝⎜
⎞

⎠⎟

V
in
−V

out( ) e
Vout

, 

which is somewhat easier to calculate and also aids in picking component values in 
a design to minimize the error. 

Also, the error terms (the things that get squared under the radical, not the 
individual residuals) that are 10% or less than the maximum error term can usually 
be dropped from the calculation because 

 1002 +102 = 10000+100 = 10100 =100.5 ≈100  

A shortcut for the calculus-challenged who already have the formula entered in a 
spreadsheet or other calculation aid is to calculate actual differences in the answer 
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due to the uncertainties in the factors and add the calculated differences in the RSS 
sense. 

For example, the following spreadsheet shows this approach.  The column labeled 
RT contains the formula to compute RT based on the R1, Vin, and Vout columns. In 
each row, one of the parameters is tweaked from its nominal value. The errors 
introduced by each parameter are computed. The root-mean sum of these errors is 
230, the same as derived through calculus earlier. 

R1	
   Vin	
   Vout	
   RT	
   error	
  
20000	
   3	
   1	
   10000	
   0	
  
20200	
   3	
   1	
   10100	
   100	
  
20000	
   3.013	
   1	
   9935.42	
   -­‐64.5802	
  
20000	
   3	
   1.013	
   10196.28	
   196.2758	
  

	
   	
   	
   	
   	
  
	
   	
   	
  

RMS	
   229.5535	
  
EXAMPLE: The relationship between resistance R and absolute temperature T in a 
thermistor can be described with the Steinhart and Hart model: 

  

T = 1

a + bln R + c ln R( )3
 

Suppose R is measured with an uncertainty of ±1.5%.  Let a = 8.21×10-4±10-5, b = 
2.07×10-4, and c = 9.83×10-8. If R = 110 KΩ, what is the range of possible 
temperatures?  

SOLUTION: The nominal temperature is found by substituting the nominal values: 

  

T = 1

8.21×10−4 + 2.07×10−4 ln110×103 + 9.83×10−8 ln110×103( )3
= 296 K  

Take the partial derivatives with respect to each variable (a and R because b and c 
are assumed to have no error) to obtain the error sensitivity: 

  

ε
T
= ∂T
∂a

ε
a
+ ∂T
∂R

ε
R

=
ε

a
+

b+ 3c ln R( )2
R

ε
R

a + bln R + c ln R( )3⎡
⎣⎢

⎤
⎦⎥

2

= T 2 ε
a
+

b+ 3c ln R( )2
R

ε
R

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Substituting the values ea = 10-5 and eR/R = 0.015 and taking a RMS sum gives a 
temperature uncertainty of eT = ±0.94K. 

Quantization Error 

We’ve neglected one important item in most of these calculations. We’ve assumed 
that the individual measurements are made to infinite precision (but because of 
noise, not to infinite accuracy). Any actual measurement will have a quantization 
error. In other words, it will be measured to only a finite number of digits, and the 
last digit will have some uncertainty in it. All of the formulas we have derived 
assume that the true standard deviation of the measurement is significantly larger 
than the quantization error. If the standard deviation of the measurement is a 
factor of ten larger than the quantization error you can pretty much ignore 
quantization and use the formulas as is. However, if the true standard deviation 
and the quantization error are comparable, you have to include the quantization 
error or noise in your calculation. For the purposes of E80 we will use the following 
procedure: 

1. Calculate the quantization range, q. As explained above, for a fully-accurate 12-
bit DAQ set to a ±5 V range, q is calculated as 

  
q =10V

1
212

= 10V
4096

= 0.027V . 

For a digital instrument, like a DMM, it is typically 1 least significant digit. If we 
assume that quantity being measured has an equally likely chance of having a 
value anywhere in a quantization range, the uncertainty in a given measurement is 

  ±q / 2 , but for a series of measurements, the standard deviation is   q / 12 .1 

2. If 
  
S > 10q

12
, you can ignore quantization in your calculation. 

3. If 
  

q

12
< S < 10q

12
, you need to include quantization. Add   q / 12  to your sample 

standard deviation in the RSS sense. 

  
S

used
= S2 + q2

12
. 

                                            
1 If the error is uniformly distributed between -½ and ½, the standard deviation is 

  

σ = σ 2 = x2 dx
−0.5

0.5

∫ = x3

3
−0.5

0.5

= 1
12

. 
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4. If 
  
S < q

12
, report your confidence interval as   ±q / 2 , and plan to take a stochastic 

signals class to learn how to do the calculations properly. The Digital Signal 
Processing (DSP) world has a variety of techniques to deal with these issues, such 
as dithering, noise shaping, and oversampling. Yes, I know, the confidence interval 
in 4 is larger than in 3. It’s counterintuitive but correct. 

Application: Thermistor Error Analysis 

Lab 2 will use Vishay thermistors.  The datasheet is rather cryptic, so this section 
gives an example of error analysis for the thermistors. 

The thermistors are characterized by their nominal resistance at room temperature 
(25 ○C, 298 K) and by their tolerance (the deviation from nominal resistance at room 
temperature).  The temperature (T) can be calculated based on the resistance of the 
thermistor using the extended Steinhart and Hart formula2: 

 

 
where Rref is the nominal resistance at room temperature. Notice that this is a 
slightly different formulation than in the previous thermistor example. 
 
Consider a precision 5 kΩ thermistor with a ±2% tolerance.  According to the 
datasheet on the Lab 2 web page, the B25/85 value is 3977 ±0.75%. Looking up the 
other parameters for this B25/85 value gives A1 = 3.354×10-3 K-1, B1 = 2.570×10-4 K-1, 
C1=2.620×10-6 K-1, and D1 = 6.383×10-8 K-1. Note that units are wrong on the 
datasheet. Also note that the B25/85 value doesn’t come into the calculations except 
as a way to look up the other parameters. 

Suppose the resistor is placed in an oven and the resistance is measured with an 
ohmmeter to be 400 Ω.  Suppose the ohmmeter has an uncertainty of ±1.5%. What 
is the temperature of the oven? 

The nominal temperature is found by substituting R = 400 Ω into the Steinhart and 
Hart formula to find T = 367.57 K = 94.57 ○C. 

The uncertainty in the resistance is the RMS of the resistance tolerance and the 
ohmmeter uncertainty, or 2.5%. Also, at this temperature of about 95 ○C, the 
datasheet indicates that ΔR/R due to the B tolerance is 1.9%.  The datasheet 
indicates that these errors can roughly be added, for a total resistance error of 2.5 + 
1.9 = 4.4%, indicating that the effective resistance is 400 ± 17.6 Ω, which could be 
substituted back into the equation.  Alternatively, the datasheet indicates a 

                                            
2 http://www.eng.hmc.edu/NewE80/PDFs/VIshayThermDataSheet.pdf  Page 78.  The number of 
insignificant figures in the data sheet is absurd.  
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Temperature Coefficient of Resistance (TCR) of –3.01%/K, giving a resistance 
uncertainty of ±(4.4/3.01) = 1.46 K. 

This result can be cross-checked with the curves from the datasheet. For the 2% 
resistor, the curve indicates a temperature error of 1.3 K at 95 ○C. This calculation 
does not account for the error from the multimeter. 

 
 


