Data Analysis, Standard Error, and Confidence Limits
E80 Spring 2011 Notes

We Believe in the Truth

We frequently assume (believe) when making measurements of something (like the

mass of a rocket motor) that there is a true value, u, of the measurement and that each
individual measurement has some random error in it. We further assume (believe) that
the true measurement lies at the center of a distribution of the noisy measurements, and
that the distribution is normal (Gaussian) with a true standard deviation of o . The
question then arises: From our set of actual (noisy) measurements can we estimate the
value of 1, and how certain are we of the estimate? In other words, if we measured the

mass of a rocket motor a bunch of times, how close is our estimator to the actual mass,
and how certain are we?

Sample Mean of a Set of Measurements
For a set of N measurements
X Xgs s Xy s

we can calculate the sample mean,
S
x=—)x,
N2

which we use as an estimate of the true value of the measured quantity, u. If we knew
the true value, we could calculate the error in each measurement as

&=x—HU.

However, since we don’t know the true value, but only the sample mean, we can
calculate the residuals

Because our mean depends on our measurements, only N —1 of our residuals are
independent. We have lost a degree of freedom in calculating our residuals, rather than
our errors.

We can characterize our residuals with the sample variance and sample standard deviation.
The sample variance is

2 1 Y P 1 a —\2 1 < 2 =2
e U e DL

i=1

The last form is useful for calculations. The sample standard deviation is

s=4/s%.

The sample standard deviation is an estimate of ¢, the true spread of the distribution of
the measurements, but it doesn’t relate directly to how far the sample mean is from the
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true value. That distance is related to the Standard Error, which in turn relates to the true
standard deviation by

SE = ——.

Since we believe in o, but usually don’t have a way to determine o, we’ll use S and the
Estimated Standard Error,

ESEzi.

JN
For a set of measurement with sufficient individual measurements, the probability that
the true value of the measurement is within a given range of the sample mean follows
the normal distribution with the estimated standard error replacing the sample
standard deviation, e.g., for a sample mean of 42.000 and a sample standard deviation
of 0.100 in a set of 200 measurements, the estimated standard error is

pgp_ S _0.100

JN 200

The likely range of the true value relative to the sample mean is usually reported as a
confidence interval, e.g.,

=0.0071.

X =42.000 £0.007(68%confidence interval),

which means that we are 68-percent certain that u is within +0.007 of 42.000.

The confidence interval is usually calculated by multiplying the estimated standard
error by a constant related to the area under a standard normal curve, (ESE x k). For
example, if we had sufficient measurements (and the 200 above qualifies), and we
wanted a 95% confidence interval, the fraction of the area under a standard normal
curve from —1.96 to +1.96 is 95%, so one would commonly calculate

X =42.000£0.0071x1.96 = 42.000 £ 0.014(95%confidence)

However, as the number of measurements decreases, the normal distribution under-
reports the uncertainty. One must use the Student’s (W.S. Gossett) t-value to accurately
estimate the confidence interval. The confidence interval, £4, is given by

s
Nk

and 1 is the Student’s f-value determined given the degrees of freedom and the desired
confidence limit. A portion of the two-tailed table follows:

A =tESE =
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SIGNIFICANCE LEVEL FOR TWO-TAILED TEST

df 20 10 05 02 01 001
1 3078 | 6314 | 12.706 31.821 63.657 636.619
2 1.886 | 2.920 4.303 6.965 9.925 31.598
3 1.638 | 2.353 3.182 4.541 5.841 12.941
4 1.533 | 2.132 2.776 3.747 4.604 8.610
5 1476 | 2.015 2.571 3.365 4.032 6.859
10 | 1372 | 1.812 2.228 2.764 3.169 4.587
20 | 1.325 | 1.725 2.086 2.528 2.845 3.850
30 | 1.310 | 1.697 2.042 2.457 2.750 3.646
40 | 1.303 | 1.684 2.021 2.423 2.704 3.551
60 | 1296 | 1.671 2.000 2.390 2.660 3.460
120 | 1.289 | 1.658 1.980 2.358 2.617 3.373
o | 1282 | 1.645 1.960 2.326 2.576 3.291

For the example above, if we only had 11 measurements with the same sample mean of
42.000 and sample standard deviation of 0.100, the degrees of freedom would be

df =N —-1=11-1=10 and the value of ¢ for 95% confidence (5% significance) would be
2.228 as opposed to 1.960 for the normal distribution and

A=iESE =2 22228219 _5 728(0.030) = 0.067,
JN Vit

and we would report
X =42.000 £ 0.067(95% confidence) .

A subtlety that often escapes students is that +4 is the uncertainty in the average or
sample mean of the measurements, but the uncertainty in any individual measurement
is governed by S, the sample standard deviation. This difference is even more important
in linear regression.

Linear Regression

For a set of N measurement pairs, (x1 R yl),(xz, yz),- --,(xN, yN), we can assume that the
measurements are linearly related by a function of the form

Vi :ﬁo +ﬁ1xi + &,
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where the error, ¢, is the difference between the true value of y, and the measured
value of y,. x, is assumed to either be known exactly, or to contain much less error than

Yi-
gi:yi ytrue (B0+ﬁ1 )

The true values of the set of y’s and the true values of 3, and f, are most likely
unknown, so we will again work with the residuals:

)A/z = ﬁo + leir
and
Yi = ﬁo +ﬁ1xi te;,

where
€ =Y _5),‘ =Y _(ﬁo +:lei)'

And the circumflex (*) indicates an estimated value, just as X is an estimate for ¢ and S

is an estimate for 0. The most common form of linear regression involves minimizing
the Sum of the Squared Residuals (SSE ).

N

SSE = gef = Z[yi - (Bo + [Aflxi)T.

i=1

The results of the minimization (the derivation of which can be found many places) are

_gx—x _5)

B,

and

where x and y are the usual means.

The equivalent of the sample standard deviation for linear regression is the Root Mean
Squared Residual (RMSE) or S, .

The N —2in the denominator comes from the fact that we have lost two degrees of
freedom in our residuals because we calculated both f,and f, from our data.
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The sample standard error for BO is similar to the sample standard error for a single
parameter but has a term to account for the linear fit

=2
PONEEE 2 KPR S—
0 N —
D (x, - %)
i=1

The expression for S, just has a term for the linear fit

As before, one must use the Student’s (W.S. Gossett) f-value to accurately estimate the
confidence intervals for both 8, and f,. The confidence interval, +4, , is given by

)'ﬁo = tSﬁo 4

and A, by
Ay =18, -
However, the degrees of freedom used in the table, df =N -2, as explained above.

Sometimes, after calculating the linear fit, one wants to know the confidence interval in
y calculated for a specific x, +4, . The sample standard error for y is given by

—\2
%:&?%+W&;ﬂ_

Z(Xi - f)z

i=1
And the confidence interval as
A, =1S,.

This calculation gives you the confidence interval for the calculated average y if you set

the experiment to x and repeated the measurement a number of times. Note that this
question is very different than asking what the spread of measured values would be for
y if you set the experiment to x and repeated the measurement a number of times.

For generalized least-square parameter estimations, there are equivalent expressions
that either can be derived from first principles, or found in the statistics literature.

Propagation of Errors

Often one needs to calculate a quantity based on several other measured quantities. The
question arises: How do errors in the other measured quantities affect the calculated
quantities. In particular, assume you have a function

F=F(x,y,z,-:").
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How do you calculate the uncertainty or confidence interval in F given the
uncertainties or confidence intervals in x,y,z,:--?

Assume that the residuals are a reasonable approximation for the errors and that the
errors are small. Then we can do a Taylor series expansion of F about the true values of
the variables, and only keep the first-order terms

oF oF oF

F_F;r‘ue - ax (x xtrue)+$(y ytrue)-i_a_z(Z Ztrue)-i_ e

With the approximate substitution ¢ = x-x,,, etc. we have

true’

& aF a—FE +a—F8 + -
ro ax dy * dz °

If the errors are systematic, known, and small (so that the linear approximations are
accurate) the above expression complete with the algebraic signs on the derivatives will
permit one to calculate the error in F fairly accurately.

However, the more common case is that the errors are random variables, ands one
makes the assumptions that the errors are uncorrelated, i.e., for a set of data €.,€,, and
g, are completely independent of each other. In such a case the uncertainties add in a
Root-Sum-of-Squares sense

Polox ) T lay ) T o) Tt

An example will help to clarify the use of the equations: Suppose we want to calculate
the resistance of an unknown resistor, R;, which is the bottom half of a voltage divider
with known resistor R; on top, and measured input and output voltages V,, and V,,,.
The equation for the resistance of Ry is

RV
RT —_ out .
V.-V

The desired expansion is (using a differential for the Taylor series)
oR; oR, oR, |4

—-RV RV,
dR, + dv. dv = M dR + 1 —out 4+ ——1—dV .
T T v e e A e T

out

dR, =

Assuming the residuals are good estimates for errors and that the errors are small

V -RV RV,

out out

A R T R A

out

If we knew the exact small values for the residuals, we could use the equation as is, but
if we wanted to use the Standard Deviations, Standard Errors, or Confidence Intervals,
and we can assume they are uncorrelated, we would add them in the RSS sense
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out 0 out

2 2y72 272
|4 RV,
e. = out e2 + 1 " out 62_ + 1 "in 62 .
! \/ V=V Va=Vo) ™ (Vi =Vo)
To be explicit, the e’s are replaced by the standard deviation, the standard error, or the
confidence interval as appropriate. As a numerical example, assume R, is a 20 kQ + 1%
resistor and V,, and V,,, are both measured by a fully-accurate 12-bit DAQ set to a 5V

range. The smallest resolvable voltage in a DAQ is the range divided by the number of
distinct values, which is calculated as

1ov— =1 _0027v.
2 4096

The uncertainty in an individual voltage measurement is +1 /2 LSB (Least Significant
Bit) or

+0.027V
———=10.013V.

If V, =3.000+0.013V and V

out

=1.000 £ 0.013V, then the uncertainty in R; is

1’ 20kQ’1” 20kQ*3*
R = \/ 200Q° +—400132 +W00132 =230Q

(3-1) (3-1)

The calculated value of R; with the uncertainty is

RV, _ 20kQ1.000

R, = e =10.00kQ + 0.23kQ2.
3.000 —1.000

"y oy

in out

Often a simplification of the error formula will aid in the calculation. In our example,
we can substitute R; in the error formula:

\7A
& (")
T _RT ! ‘/uut

e, =—e —e, +t—mm¢
fr Rl K (‘/tn _‘/oul) g (‘/tn _‘/ouz) V!

which is somewhat easier to calculate and also aids in picking component values in a
design to minimize the error.

Also, the error terms (the things that get squared under the radical, not the individual
residuals) that are 10% or less than the maximum error term can usually be dropped
from the calculation because

J100% +10% = /10000 + 100 = /10100 = 100.5 ~ 100

A shortcut for the calculus-challenged who already have the formula entered in a
spreadsheet or other calculation aid is to calculate actual differences in the answer due
to the uncertainties in the factors and add the calculated differences in the RSS sense.

Quantization Error

We've neglected one important item in all of these calculations. We’ve assumed that the
individual measurements are made to infinite precision (but because of noise, not to
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infinite accuracy). Any actual measurement will have a quantization error. In other
words, it will be measured to only a finite number of digits, and the last digit will have
some uncertainty in it. All of the formulas we have derived assume that the true
standard deviation of the measurement is significantly larger than the quantization
error. If the standard deviation of the measurement is a factor of ten larger than the
quantization error you can pretty much ignore quantization and use the formulas as is.
However, if the true standard deviation and the quantization error are comparable, you
have to include the quantization error or noise in your calculation. For the purposes of
E80 we will use the following procedure:

1. Calculate the quantization range, g. As explained above, for a fully-accurate 12-bit
DAQ set to a +5 V range, g is calculated as
g= IOV% _ 10V _ 0.027V.
27 4096
For a digital instrument, like a DMV, it is typically 1 least significant digit. If we assume
that quantity being measured has an equally likely chance of having a value anywhere
in a quantization range, the uncertainty in a given measurement is +¢/2, but for a

series of measurements, the standard deviation is g/~/12 .

1 . .
2.1f §> %, you can ignore quantization in your calculation.

3.1If % <S< 19 , you need to include quantization. Add g/ V12 to your sample

Ji2

standard deviation in the RSS sense.

L=+ L
used 12

4. If S< %, report your confidence interval as ¢ /2, and plan to take a stochastic

signals class to learn how to do the calculations properly. The Digital Signal Processing
(DSP) world has a variety of techniques to deal with these issues, such as dithering,
noise shaping, and oversampling. Yes, I know, the confidence interval in 4 is larger than
in 3. It's counterintuitive but correct.
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