
BURNSIM (MATLAB) INSTRUCTIONS
Graham Orr, Harvey Mudd College, FEB 2008v3

INCLUDED TOPICS:

1. BACKGROUND
2. OVERVIEW OF CODE
3. NON-DIMENIONAL I/O
4. BASIC SIMULATION I/O
5. END-BURNER I/O
6. SAMPLE RUN
7. ADDITIONAL NOTES

1. BACKGROUND

Because the mass flux through a nozzle is closely correlated to surface area of the

burning solid fuel grain, it may be useful to examine how certain fuel grain shapes evolve
as they burn away during a motor firing. The reaction process is heterogeneous, meaning
that the reaction takes place on the interface between the fuel solid and the hot gases near
the fuel grain surface. As fuel is consumed from the surface, the grain shape evolves,
which may have an impact on the reaction surface area and therefore thrust level.

These m-files simulate the geometric effects of a fuel grain on a rocket motor's
thrust curve. In addition, it is a practice in the use of non-dimensional parameters, which
is particularly useful in numerical analysis of fluid flows, computer simulations, and
verification of small-scale models to larger systems.

2. OVERVIEW OF CODE

The provided code works as-is and shouldn't require modification. It would be

cruel to do otherwise. Here's a brief description of each m-file:

makeBore.m - This file creates a matrix of ones and zeros that represents the

cross-sectional geometry of the fuel grain of study. Zeros represent fuel space and ones
represent the initial bore shape of the grain. The default resolution of this matrix is
200x200. Although in application to rocket motors the fuel burns out once the fuel burns
away to the outer limit, this function just keeps all the space "outside the fuel grains as"
ones. The burnArea file will take this matrix, apply the outer limit boundary condition
and use this matrix as the initial conditions for the burn.

burnArea.m - This file actually does the burn simulation. It inputs a geometric

matrix (from makeBore, although can be manually defined as discussed later) and
“burns” the initial geometry outward to simulate the shapes that would occur from a burn.
In this code “0” represents unburned fuel and “1” represents the gas or burned fuel
region. Suppose we had an initial matrix (consisting of ones and zeros) with a discrete
index denoted by x[n]. At x[n+1] the surfaces of x[n] would be a new loci of points
some distance d from the surface of x[n]. The “surface interface” is computed as:

!

"x[n +1] = x[n +1] - x[n] (2.1)

From here, we can count up the number of ones that exists in the surface interface
to get an idea of the relative “surface area” that was consumed from index n to n+1. The
“surface area” is reported on the right portion of the input and is non-dimensional.

Once the burn has reached the “fuel grain” boundaries, the simulation stops and a
topological map of the burn is output:

!

ytopo " #x[3k]
k=1

N

3

$ (2.2)

This just compiles the images of each surface interface for every third index so

burn propagation can easily be viewed in a printout.

3. NON-DIMENSIONAL I/O

When doing simulations or analysis between a model and a system, non-
dimensional parameters can help one “scale” the model to the real system. This is
because non-dimensional parameters do not depend on physical measurements but rather
relative measurements or clever groupings of variables such that they have no dimension.

This code uses non-dimensional inputs as follows:

• Lengths are relative to the outer radius R of the fuel grain.
o ∏L=L/R (L= grainLength) (3.1)
o ∏R= Rbore /R (3.2)
o i.e. if R=2.0”, Rbore=0.7”, ∏R =0.35

• Areas A are relative to the surface area of cylinder of radius R, length L(R)
o ∏A= A/(2πRL) (3.3)
o i.e. if A=6 sq”, R=2.0”, L=6”=3R, ∏A =A/2πRL=0.0796

Similarly, the code uses non-dimensional outputs as follows:

• Areas A are relative to the surface area of cylinder of radius R, length L(R)
o A=2πRL ∏A (3.4)
o The amplitude on the “burn curve” is ∏A

• Times t are relative to the time it takes for the burning-front to burn a distance R
o t=∏T R/r (r is linear burn rate) (3.5)
o The time on the “burn curve” is ∏T

This way you can use your geometric measurements of the fuel grains to “scale” the
output curves to proper time and amplitude.

BASIC SIMULATION I//O

To do a basic run this is the structure:

[B SA]=burnArea(makeBore(∏R,Q), ∏L); (4.1)

Q is a choice input to determine the shape of your bore. Q is 1 for pentagram, 2
for circle, and 3 for square.

B is an NxNxT array, where N is the pixel width and T is the number of arrays in
the trial. B(:,:,n) will return the burn shape at index n. (You typically don’t need to use B)

SA is a Tx2 array. SA(:,1) contains the ∏T vector while SA(:,2) contains the ∏A
vector. SA can be useful because under “workspace” you can copy SA and import it into
excel to scale the time and amplitude to useable units.

4. END-BURNER SIMULATION I/O

The makeBore function is not used when simulating an “end-burner.” You can

use the following command line:

[B SA]=burnArea(zeros(200,200), ∏L); (5.1)

However, it is important to note that from the way the code is set up that the
surface area value will be reported as exactly twice as high as it should be. Divide all of
∏A ‘s values by two. In addition, the burn duration will be reported to be half what it
really is. Multiply all ∏T ‘s values by two. The duration of burn should be about L/r. It is
still unclear whether this mode terminates the simulation properly. You can simply cut
off the thrust curve at t=L/r. It is also simple and adequate to predict an end-burner’s
thrust curve by hand.

5. SAMPLE RUN

Suppose I have a fuel grain with measured grain diameter 1.1 inches, length 1.5
inches, and circular bore diameter 0.5 inches and a burn rate of 0.25 in/sec. Solving for
∏R, ∏L I get:

∏R = 0.4545
∏L = 2.727

I enter this in Matlab’s command line:

[B SA]=burnArea(makeBore(0.4545,2), 2.727);

Matlab returns an animation and the following display:

I access the data in the array SA via “Workspace”:

I need to scale these numbers back to dimensional numbers. Because of this I calculate
the scaling factors for my conditions:

A=2πRL ∏A A/∏A=2πRL =5.184

t=∏T R/r  t/∏T =R/r=4.4

In Excel the data can easily be scaled:

Finally, I can make a graph of the dimensional simulation data:

If desired, I can multiply the area by the burnrate and density (about 0.063 lb/in3) of
APCP to get mass flux through the nozzle:

Through some hoops and bounds, I can acquire a rough thrust curve:

Now, does my thrust curve seem reasonable given my conditions? I say yes. I can easily
calculate the average thrust (51.5 N) and the total impulse (126 Ns). What other
parameters could one extract?

6. ADDITIONAL NOTES

This simulator is designed to simulate single fuel grains. If multiple fuel grains

are used, enter the specifications for one of the fuel grains and simply multiply the output
(surface area, thrust, etc.) by the number of grains.

To acquire the linear burnrate r, examine the measured thrust curve and determine
the burntime T, of the motor. If the motor is a circular bore, one can find the average
burnrate by figuring how long it took to burn through the “web” of the propellant grain.
This can be expressed mathematically as:

!

r =
R " R

bore

T
 (7.1)

If the motor is an end-burner (such as the G69N), the average burnrate can be expressed
as:

!

r =
L

T
 (7.2)

