Auntie Spark’s Guide to Error Analysis

Many of my fellow students have complained about error analysis and propagation
of errors. What are we supposed to do and how do we do it? Well the lectures and
the lecture notes seemed clear enough to me, but since they don’t seem that way to
everyone, I've put together a few examples.

Example 1: A Single Set of Measurements

The first example is measuring air velocity from Pitot tube pressure measurements.
We have to start from the theory: The equation for a Pitot tube that relates the
pressure difference to the velocity is
2(P,— P)

Yo,

U= (1.1)

where v is the free stream velocity, P, is the stagnation pressure (the pressure at

the tip of the Pitot tube), P is the free-stream pressure (the pressure at the side
tap), and p is the air density. As long as I use consistent units, it doesn’t matter

whether I use SI or American Engineering units. Since the manometer I'm using is
a differential one, I can simplify the equation to

U= 2AP (1.2)
\/ P

where AP is the pressure difference measured by the manometer. As a starting
point I looked up the accuracy of the manometer on the website http://www.dwyer-
inst.com/Product/Pressure/Manometers/Digital/Series475#specs. It appears to have
an accuracy of £0.5% of full scale at the temperature range of interest. Since the
full-scale differential pressure is 10 inH,O, the uncertainty of the instrument is

+0.05 inH,0 or +0.012 kPa. To calculate the uncertainty in the density of air, I

needed the formula for the density of air in terms of things I can measure:
temperature, atmospheric pressure, and relative humidity. For this exercise let’s
assume the answer came out to 1.220+0.020 kg/m3. At one specific speed setting for
the wind tunnel I found that the manometer was averaging 1.50 inH,O and the

fluctuations seemed to be +0.07 inH, 0. Since the manometer doesn’t store or

transmit data I had to more-or-less eyeball the average and uncertainty from
watching the excursions for about a minute. The proper way to add the uncertainty
of the measurement with the uncertainty of the instrument depends on whether we
assume the errors are random and uncorrelated or not. Let’s assume they are. In
that case the correct uncertainty is



Com =€ + €2, =N0.057+0.07° =+0.086 inH,0=+0.021 kPa . (1.3)

sum

Now I can calculate the uncertainty in the velocity. The differential of Equation
(1.2) 1s

_1 dAP AP dp _ pdAP-APdp

f.‘zAP ,0 /ZAP pv

Again, assuming that the errors in AP and p are random and uncorrelated, the error
In v is:

(1.4)
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e, =——+(re.p) +(APep) (1.5)
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For my measurement, then, the velocity is

2(1.50inH,0
L= [2AP _ [2(1.50in 23):24.75m/s:55.37mph (1.6)
0 1.220kg/m

and the uncertainty is:

e, :L2 (peAP)2 +(APep)2

pv

= - \/(1.220 kg/m®-21 Pa) +(374 Pa-0.020 kg/m*)’
(1.220 kg/mS) 24.75 m/s

=0.72 m/s

(1.7)

The result is reported as v =24.75+0.72 m/s . If you knew the confidence interval,
e.g., 95% confidence), you'd include that as well. For the curious, the uncertainty in
the calculated velocity 1s about +3%.

If the manometer had a serial interface, I would have connected it to a computer
and used LabVIEW to calculate the mean and uncertainty of the measurement
using Student’s ¢-test and my desired confidence interval. I could then either have
the VI calculate the velocity and uncertainty using the formulas above with my
entered instrument and density uncertainties, or I could have transferred the
values to a spreadsheet and calculated the velocity and uncertainty there.

For the pedantic, uncertainty, error, and residual have very precise meanings
relating to confidence interval, true or population mean, and sample mean. A
statistician would state that the residuals are used as estimations of the errors and
a statistical analysis of the residuals is used to estimate the confidence interval for



a given uncertainty. In common engineering practice, the three are used as
synonyms with the term residual being reserved for special occasions.

Example 2: A Linear Fit/Calibration of a Sensor

The second example is calibrating a differential pressure sensor to measure
velocity. In this case I used a Freescale MPX53DP to measure the pressure
difference between a pressure tap in the tip of a nosecone and the shoulder of a
nosecone. This arrangement is a Pitot tube arrangement, but doesn’t meet the
recommendations for a Pitot tube, so a priori it’s unlikely that the proportionality
constants will be the same as in the theory, but the functional form should be
correct. We have several possibilities for proceeding here. There are four models
that need to be accounted for in this analysis. The first model is Bernoulli’s law or
the Pitot tube equation, Equation (1.2). The second is the assumed relationship
between the differential pressure and the output voltage from the sensor,

Vi = KAP+V.

sensor off

(1.8)

where K is the sensitivity (nominally 1.2 mV/kPa from the data sheet), and V, is

the offset voltage (nominally 20 mV from the data sheet). The third is the
relationship between the sensor voltage and the output voltage of the conditioning
circuit. For a decently designed circuit the relationship should be linear,

v.=GV_ _ +V

out sensor off2

(1.9)

where G is the circuit gain and V., is the circuit offset calculated relative to the
output. Typical values for G and V., might be 160 and —3V respectively. The fourth

1s the relationship between the analog-to-digital converter and the input voltage.

N = 2““i ) (1.10)

‘/ref

For my case, I have a 16-bit converter with a range from OV to 3.3V, so bits = 16 and

V, =33V .

At this point I have a choice. I can experimentally determine the constants and
uncertainties in each of my models and propagate the errors as we've done before,
or I can combine the models, get an overall functional form, and I can
experimentally determine the constants and uncertainties for the combined model.
Since the second method requires % of the experiments of the first method, that’s
what I'll do.

N=m'v’+b (1.11)



where

bits—1
m' = 27 GKp (1.12)
‘/ref
and
- 2" (GViyy + Vigs) (1.13)
v . .

ref

It looks like a plot of N versus v® should be a straight line and I can get nominal
values for the slope and intercept from my models. However, I can measure N much
more accurately than I can set v. Linear regression assumes that the uncertainty in
x 1s negligible when compared with the uncertainty in y. In other words, it assumes
I can set or measure my independent variable precisely and all of the error is in the
dependent variable. What to do?

Well, what am I trying to do anyway? Ultimately, I want to get N(¢) during a flight
and use it to calculate v(¢) . Since I'm going to have to do the inverse function

eventually anyway, I might as well do it now.
v =mN +b (1.14)

where m=N/m' and b=-b'/m'.1 can now take my data, plot v* as a function of
N, and do the line statistics on m and b.

The associated spreadsheet, FittingAPitotNose.xIsx, is an implementation for one
data set. I attempted to set the velocity, v_, , in the wind tunnel in 2 m/s increments.

set ?
The attempted settings are Column A in the spreadsheet. I then averaged the ADC
counts (N __ ) at each setting for Column B. I could have done statistics on each

meas

measurement and done a weighted least-squares fit, but my line fitting should give

2
set

me sufficient statistics. I then calculated the square of each set velocity, v:, (Column

(), and used Excel’s built-in line fitting functions to calculate the slope, m (Cell
B35), and the intercept, b (Cell B36), of my v* vs. N fit. I then calculated the v?
from the fit, v, (Column D), for each N, . I need these for my residuals, which

calce

are calculated in Column E and then used to calculate the root mean squared
residual, S,, in Cell E35. For a given N callit N ;» the sample standard error in

meas ?

v, S, , is calculated by



1, (-7 | N,-N)
e N e count
N Z(xz _5)2 count 2 (N B N)Z

=1 i=1

Il
n
+

, (1.15)
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(given in the Spring 2015 Data Analysis Lecture Notes) which is Column G. Note
that the values are largest at the two ends and smallest in the middle. The degrees
of freedom are 29 = count—2 in this case (Cell B38) and the significance level, «, is
chosen as 0.05 (95% confidence interval) in Cell B39. The Students ¢-test value is
calculated in Cell B40. The resultant plus and minus confidence intervals are
calculated in Columns H and I and plotted along with the best-fit line and the data
points in Figure 1.
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Figure 1: The confidence interval for the velocity squared as a function of the ADC counts

Even though the confidence interval boundaries look like straight lines, they are
actually curved with the minimum in the middle and the maxima at the two ends.
For this case it’s hard to see the curvature.

Finally, the confidence interval in v_, is calculated from the confidence interval in

2
cale

calc

v- . with the standard propagation of errors technique where



2
vza\/§g2 :ng ’ (116)
ov: v 2v vV

and ¢, =tS, (Column K). A plot of the confidence interval as a function of the

calculated velocity is shown in Figure 2. Note that the uncertainty in velocity
increases greatly as the measured velocity decreases, whereas the uncertainty in
the square of the velocity doesn’t vary much with velocity.
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Figure 2: The Confidence Interval of the Velocity as a Function of the Velocity

If you had generated these data while calibrating your Pitot tube, how would you
use your results to analyze actual flight data from your Pitot tube? Your data from
the flight would be a sequence of numbers from your ADC, in other words a set of

N’s. For each N, you would calculate the v? from your calibration (linear fit) m and
b and calculate the confidence interval for that v’ using Equation (1.15). Remember

that all of your values in the equations except for N, (the IV, in the equation) and

v’ come from your original calibration data set. You then calculate your v, = \/E ,



and your confidence interval from Equation (1.16). You can then plot your velocity
versus time with your error bars or error band.

Example 3: Integrating and Differentiating Time Series Data

The third example is calculating acceleration and position from a set of velocity
measurements (say from a speedometer). If you had a perfect noiseless function for
the velocity, v(t), then the standard method for calculating the acceleration would

be to differentiate,

du(t)
t) = 1.17
a(?) 7 (1.17)
and the standard method for calculating the position would be to integrate,
() = [ v(e)dt’ (1.18)

Since we're differentiating and integrating with respect to time, we need models for
the errors or noise that are functions of time. There are three common functions
that are used to model the errors or noise: The first is a constant bias,

&,(t) = constant = g, . This sort of error usually results from an inaccuracy or offset

in the calibration. The second is to assume that there is a random noise component,
¢ (t), that is Gaussian white noise with standard deviation, o . Note that this

model doesn’t work for the Pitot tube in Example 2. There the uncertainty varies
with velocity. Here it doesn’t: The noise is constant regardless of velocity. The third
1s to assume that the nearly constant bias exhibits flicker noise. On the time scale of
a flight we shouldn’t have to worry about the flicker noise, so we’ll ignore it. Our
resulting model is

v (@) =v(t)+¢& +¢,(2) , (1.19)

where v, (¢) is the measured velocity and v(f) is the true velocity. The integration of

the model will give:
t
r(t) = j [v)dt' +&,dt' + &, (t)dt]=r(t) + &t + oA (1.20)
0

where At is the sample time or the time between measurements (the reciprocal of
the sample rate). The error in the position is then the measured position minus the
true position or

e ()=r, () —r(t) = &t + oAt (1.21)



The error term that grows linearly with time can be eliminated by carefully
measuring the DC bias and subtracting it from the measured velocity. The term
that grows as the square root of time is a classic random walk and can’t be easily
eliminated. The standard deviation of the noise can usually be decreased by buying
a more expensive sensor (military-grade accelerometers and rate gyros are very
expensive). Also, the sampling rate can be increased to decrease At .

To do a proper job of propagating the error in velocity to the error in acceleration
requires extensive information in stochastic signals. The Wikipedia articles are a
good place to start for the interested reader. However, there is a fairly
straightforward method to get an approximate confidence interval or error bar
estimate. If you have a multisample measurement of the signal with a known input
(for example 100 samples at a known velocity), you can take the numerical
derivative and then measure the standard deviation of the resultant samples and
use that value in your calculations.

An example of these techniques is shown in the spreadsheet:
SampleTimeSeriesErrors.xlsx. As a reminder, in this example I have a vertical
velocity sensor (on a rocket) that has a fixed offset and random errors that don’t
vary with time or velocity. I figure you can do the work to propagate the errors from
a device like in Example 2.

To calculate my offset and standard deviation I took two seconds of data before
launch when I knew the velocity was zero. On the spreadsheet these values
correspond to t =—2 to ¢ = 0 in Columns A and B. I then tracked the vertical velocity
from ¢ = 0 to apogee. For the two seconds of pre-flight data with known velocity, I
calculated the average (Cell C2) and the standard deviation (Cell C1). The average
was used as the best guess for the constant offset, and all of the measured velocities
had the average subtracted from them to get the corrected velocity. I was too lazy to
bother with Students ¢-test, so I used + the standard deviation for my 68%
confidence interval and for plotting my error bars (Column D). The results are
shown in Figure 3. The error bars are the horizontal points that are close to the
round data points.
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Figure 3: The corrected Velocity with Error Bars

Next, I numerically integrated the corrected velocities from ¢ = 0 onward to get the
altitude (Column E). I assumed that my subtracting took care of the offset term in
Equation (1.20), and I used my calculated standard deviation and the sample rate of
50 SPS to calculate the random-walk term in the same equation (Column F). I
restarted the time to O at both ¢ = -2 and ¢ = 0 to show how the term grows with
time. See Figure 4 for results. The error bars are plotted on the graph but the
growth is so slow that they are hard to see. A simple plot of Column F versus
Column A would show the growth in uncertainty better.
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Figure 4: The Numerically Integrated Altitude with Error Bars from the Corrected Velocity

Finally, I took the numerical derivative of Column C to get the acceleration in
Column G. I calculated the standard deviation for the first two seconds when I know
the acceleration was 0 to get my standard deviation (Cell G1) and used it for my
confidence interval and error bars for the acceleration (Column H). The noise-
magnifying effect of taking numerical derivatives is very obvious in Figure 5.
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Figure 5: The Numerically Differentiated Acceleration with error bars from the Corrected Velocity

It’s clear that the errors in taking numerical derivatives are huge. If you use any of
the techniques for reducing the noise in a derivative, such as lowpass filtering or
fitting a spline, you can use the same method of calculating the standard deviation
on the processed signal for a stretch where you know the signal isn’t changing to get
error estimates. Just be aware that those techniques can remove some of the actual
signal as well as the noise, and the calculated error bars will not reflect the missing
signal. In fact, most of the techniques we have described are for errors or noise that
1s random with a zero mean. They cannot detect systematic errors, and you have to
be aware that they can’t.



