
Acoustics Research Group,
Department of Electrical & 
Computer Engineering,
University of Canterbury,
New Zealand

A
coustics Research G

roup

Temperature sensors

Peter T Gough
Visiting Professor 



A
coustics Research G

roup

Contents

Why measure temperature?
Characteristics of interests
Types of temperature sensors
– 1. Thermistor
– 2. RTD Sensor
– 3. Thermocouple
– 4. Integrated Silicon Linear Sensor

Sensor Calibration (throughout)
Signal Conditioning Circuits (throughout)

2E 80  Lecture



A
coustics Research G

roup

Why we need to measure temperature

Ideal gas law  is PV = nRT
Sensors such as strain, pressure, force, flow, level, 
and position many times require temperature 
monitoring in order to insure accuracy. 
As an example, pressure and force are often 
sensed with resistive Wheatstone bridge 
configurations. The temperature errors of the 
resistive elements of these bridges can exceed the 
actual measurement range of the sensor, making 
the pressure sensor’s output fairly useless unless 
the temperature of the bridge is known. 
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Important Properties

Sensitivity
Temperature range
Accuracy
Repeatability
Relationship between measured quantity and 
temperature
Linearity
Calibration
Response time
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Main single probe types

1. Thermistor
– Ceramic-based: oxides of manganese, cobalt , nickel and 

copper

2. Resistive Temperature Device -RTD
– Metal-based : platinum, nickel or copper

3. Thermocouple
– junction of two different metals

4. Integrated Silicon Linear Sensor
– Si PN junction of a diode or bipolar transistor
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Part I Thermistor

High sensitivity
Inexpensive
Reasonably accurate
Lead resistance ignored
Glass bead, disk or chip thermistor
Typically Negative Temperature Coefficient (NTC),
– PTC also possible

R-T mode (zero-power mode): 
– nonlinear relationship between R and T
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Thermistor resistance vs
temperature 
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Simple exponential Thermistor
model

RT = R0 x exp[ β(1/T -1/T0)]

– RT is the thermistor resistance (Ω).
– T is the thermistor temperature (K)

• β is a curve fitting parameter and itself is 
temperature dependent.

• Manufacturers will often give you R0, T0 and 
an average value for β
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Simple exponential Thermistor
Model

Usually T0 is room temp 25oC = 298.15oK
– So R0 = R25

RT = R25 x exp[β(1/T – 1/298.15)]

– where  β ≈ ln (R85/R25) /(1/358.15-1/298.15)

Not very accurate but easy to use

10E 80  Lecture



A
coustics Research G

roup

Better Thermistor model

Resistance vs temperature is non-linear but can be 
well characterised by a 3rd order polynomial; in this 
case RT in terms of T.

ln RT = A + B / T +C / T2 + D / T3

where A,B,C,D are the characteristics of the 
material used.

Total measurement uncertainty = +/- 0.005oC
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Inverting the equation: T in terms of R

The four term Steinhart-Hart equation

T = [A1 +B1 ln(RT/R0)+C1 ln2(RT/R0)+D1ln3(RT/R0)]-1

Also note: 
A, B, C & D are not the same as A1, B1 , C1 & D1

Manufacturers should give you both for when R0 = R25

C1 is very small and sometime ignored (resulting in the three 
term SH eqn)
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Aside that has nothing to do with 
temperature sensors but is useful.

Both differentiating and integrating measured data is   
difficult because of noise and unknown DC offsets.

Assume we have a 3rd order Voltage to Temp 
relationship. i.e., V ≈ Vmeasured where

V =  A + B T + C T2 + D T3

Then 
dV/dT = B + 2 C T + 3 D T2

And 

∫ V dT = K + A T + 1/2 B T2 + 1/3 C T3 + 1/4 D T4

13E 80  Lecture



A
coustics Research G

roup

Thermistor problems: self-heating

You need to pass a current through to measure the 
voltage and calculate resistance.
Power is consumed by the thermistor and manifests 
itself as heat inside the device
– P = I2 RT 

– You need to know how much the temp increases 
due to self heating by P so you need to be 
given θ =  the temperature rise for every watt of 
heat generated.
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Heat flow

Very similar to Ohms law. The temperature 
difference (increase or decrease) is related to the 
power dissipated as heat and the thermal 
resistance.

∆ C = W x θ

– W in Watts
– θ in oC /W
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Self heating calculation 

∆oC = I2 RT θ Device to ambient 

Example. 
– I = 5mA 
– RT = 4kΩ
– θDevice to ambient = 15 oC /W

∆oC = (5e-3)2 X 4e3 X 15 = 1.5 oC
This means the temp will read 1.5 degrees higher than ambient

Now try it for I = 1mA with RT = 15kΩ
– ∆oC = ______________________________________
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Linearization techniques

Current through Thermistor is dominated by 10k 
resistor.

17E 80  Lecture



A
coustics Research G

roup

Linearization of a 1kOhm 
Thermistor

This plot Ti = 50 0C, Ri = 275 Ω
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Linearization math

Vout/Vin = Ri/(Ri+ RT)

Find Ti from d(Vout/Vin)/dT =0 @Ti
– then 

RT = R0 x exp[β/Ti– β/T0] x (β- 2Ti)/(β+2Ti)
– where T0 , R0 and β are given.
– For example 

• T0 = 25oC (289 oK), R0 = 1 kΩ,  β = 3560 oK
• (NB. covert all temps to same scale)
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Linearization techniques
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Part II     RTD 

Resistive temperature devices (or detectors)
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pRTD,  cRTD and nRTD

The most common is one made using platinum so 
we use the acronym pRTD

Copper and nickel as also used but not as stable
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RTD are almost linear

RTDs have a + slope of α relating the Resistance vs
Temp (i.e., resistance increases with temperature) 
so that

RT = R0(1+ α)(T –T0)

Recognized standards for industrial platinum RTDs  
are
– IEC 6075 and ASTM E-1137  α =  0.00385 Ω/Ω/°C
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Linearity: The reason RTDs are so popular
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Measuring the resistance
is easy using a constant current source

NB You can also use a simple voltage divider and 
linearize it inside the ADC processor
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With long wires precision is a 
problem

Two-wire circuits,

Three-wire circuits and 

Four-wire circuits.

Most of the following circuits can be understood 
using GΩhms law (Gough’s version of Ohms Law) 
which I define as 
“No current = No voltage drop; or
No voltage drop = No current”
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Two wire: lead resistances are a problem

The IDAC block is a constant current sink

Power supply connected here

No current flows in here
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Three wire with two current sinks
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Three wire with compensation
with two current sinks
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Four wire with one current sink.
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4 wire with precision current source
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Mathematical Modelling the RTD

The Callendar-Van Dusen equation

RT = R0 (1 + A T + B T2 + C T3(T-100) for T < 0 oC
= R0 (1+ A T + B T2)                        for T > 0 oC

– where R0 is the resistance at T0 = 0 oC and 

For platinum
– A = 3.9083 x e-3 oC-1

– B = -5.775 x e-7 oC-2

– C = -4.183 x e-12 oC-4
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Experimentally

Mostly you need to derive temperature (+/-) from 
the measured resistance (+/-).
Easiest way is to construct a Look-Up table inside 
LabVIEW or your uP
Precision, accuracy, errors and uncertainties need 
to be considered.
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Experimental uncertainties

For real precision, each sensor needs to be 
calibrated at more than one temperature and any 
modelling parameters refined by regression using a 
least mean squares algorithm. 
– LabVIEW, MATLAB and Excel have these functions

The 0oC ice bath and the 100 oC boiling de-ionised 
water (at sea level) are the two most convenient 
standard temperatures.
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Part III Thermocouples
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Thermocouples are very non-linear
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Type K and E

Type K (chromel {90% nickel and 10% chromium}—
alumel {95% nickel, 2% manganese, 2% aluminium 
and 1% silicon}) is the most common general 
purpose thermocouple with a sensitivity of 
approximately 41 µV/°C. Doesn’t like high 
temperatures

Type E (chromel–constantan) has a high output 
(68 µV/°C) which makes it well suited 
to cryogenic use. Additionally, it is non-magnetic. 
Wide range is −50 to 740 °C and Narrow range is 
−110 to 140 °C. 
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Type J and R

Type J (iron–constantan) has a more restricted 
range than type K (−40 to +750 °C), but higher 
sensitivity of about 55 µV/°C. 
Type R (platinum–rhodium alloy) containing 87% 
platinum + 13% rhodium for the positive conductor 
and pure platinum for the other conductor. Type R 
thermocouples are used up to 1600 °C.
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Type S and T

Type S (platinum-rhodium alloy) containing 90% 
platinum + 10%  rhodium for the positive conductor 
and pure platinum for the other conductor.  In 
particular, type S is used as the standard of 
calibration for the melting point 
of gold (1064.43 °C).
T (copper – constantan) thermocouples are suited 
for measurements in the −200 to 350 °C range. 
Since both conductors are non-magnetic, there is 
no Curie point and thus no abrupt change in 
characteristics. Type T sensitivity of about 
43 µV/°C.
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Mathematical Model

To cover all types of thermocouples with one equation, 
we need a 10th order polynomial to describe the 
relationship between the voltage and the temperature 
difference between the two junctions

Either 
V = b0 +b1 x T + b2 x T2 +++++ b10 T10

+ bo exp(α1(T-126.9686)2) for T>0oC

Or more usefully
T = a0 +a1 x V + a2 x V2 +++++ a10 V10
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Approximating noisy data with a 
polynomial having an arbitrary 
number of coefficients

% MATLAB script
% Assume we have measured at least 432 samples of the Voltage for monotonically increasing
% temperature T (say every one degree from 0 to 434 degrees C) and then fit a 10th order 
polynomial

% Find the first 10 coefficients

number_of_coeffs = 10;
polycoeffs = polyfit([1:432], Vmeasured , number_of_coeffs)

% Since there is no semicolon, command above will print out all 10
% coefficents for you to check.

% Recreate the noise free approximation from the coefficients

Vsmooth = polyval(polycoeffs,[1:432]);

% Compare with the original data

Error = Vmeasured - Vsmooth;

%Now think about how you might use this concept to differentiate and to integrate
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10th order polynomial fit:
Find T from measured Voltage
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Filtering out the noise:
thermocouples are very noisy
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Look-up table with hardware compensation 
is easier than using a polynomial

Note 8 bit accuracy
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What does 8 bit accuracy mean?

Eight bits = 28-1 levels = 255 levels
Assume supply voltage between 0 and 5 volts
Minimum V step between each level ≈ 20mV
Temp range required say 0 to 400 oC
Minimum temperature step ≈ 1.6 oC
i.e., Temp = T +/- 0.8oC

– This determines the quantisation error of the result 
regardless the accuracy of the sensor 

– However since the Temp often changes quite slowly you 
can use averaging to increase the apparent accuracy
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Thermocouple 
with compensation and filtering

Thermocouples are very noise prone & usually need filtering

Instrumentation amp
Low pass filter

46E 80  Lecture



A
coustics Research G

roup

Using a uP to toggle between sensors
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Part IV: Si sensors 
(semiconductor details for reference if ever needed)

The silicon bipolar transistor bandgap VBE
temperature sensor is an extremely common form 
of temperature sensor used in electronic 
equipment: 
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The VBE as a function of T

VBE = VGO (1 – T/T0) + VBEO (T/TO)
+ (nkT/q) ln(T0/T)  + ( kT/q) ln(IC/IC0)

– where
– T = temperature in oK
– T0 = reference temperature; often 300oK
– VG0 = bandgap voltage at absolute zero
– VBE0 = bandgap voltage at temperature T0 and current IC0

– k = Boltzmann's constant
– q = charge on an electron
– n = a device-dependent constant

Change in VBE with Temperature ≈ --2mV/oC
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Matching transistors at different 
temperatures

Difference in VBE = -2mV/oC
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Determining the 
Voltage change wrt Temperature

By comparing the bandgap voltages of the same 
transistor at two different currents, IG1 and IG2 and 
where   IG2 = N IG1, many of the variables in the VBE
equation can be eliminated, resulting in

∆VBE = (kT/q) ln (IG2/IG1)
= (kT/q) ln (N)

Usually this small voltage is multiplied by internal 
amplifiers
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Switch the same transistor 
between two different currents.
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Rats and Mice 
(not covered in this lecture)

Noncontact IR single sensors.

Noncontact IR imaging cameras.
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