

SENSORS AND TRANSDUCERS

Prof. Katherine Candler E80 - Spring 2013

WHAT COULD YOU FLY WITH YOUR ROCKET?

- http://www.eng.hmc.edu/NewE80/FlightVideos.html
- (just for fun):
http://www.youtube.com/watch?v=MQwLmGR6bPA

BRAINSTORM

- What sort of data might you want to collect from your rocket?

BRAINSTORM

- Atmospheric phenomena
- Temperature
- Humidity
- Pressure
- Trace gas concentration
- Dust concentration
- Particle concentration
- Rocket performance data
- Altitude
- Velocity
- Acceleration
- Vibration
- Rotation rate
- Internal temperatures

OUTLINE

- Gas Sensor
- Humidity Sensor
- Pressure Sensor
- Vibration Sensor

IMPORTANT SENSOR SPECIFICATIONS

- What characteristics are important to consider when selecting a sensor?
- Input range
- Output range
- Supply voltage
- Sensitivity
- Operating temperature range
- Response time
- Accuracy
- Size
- Cost

GAS SENSORS

- Solid electrolyte sensors $\left[\mathrm{NO}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}\right]$
- Metal oxide sensors [combustible \& toxic gases]
- Catalytic bead sensors [combustible gases]
- Electrochemical sensors [toxic gases \& oxygen]

http://www.futurlec.com/Gas_Sensors.shtml

SOLID ELECTROLYTE GAS SENSOR

- Presence of gas (e.g., CO_{2}) leads to chemical reactions

Cathode: $\quad 2 \mathrm{Li}^{+}+\mathrm{CO}_{2}+1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-}=\mathrm{Li}_{2} \mathrm{CO}_{3}$
Anode:
$2 \mathrm{Na}^{+}+1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-}=\mathrm{Na}_{2} \mathrm{O}$
Overall chemical reaction: $\mathrm{Li}_{2} \mathrm{CO}_{3}+2 \mathrm{Na}^{+}=\mathrm{Na}_{2} \mathrm{O}+2 \mathrm{Li}^{+}+\mathrm{CO}_{2}$

- Chemical reactions generate an EMF:

$$
E M F=E_{c}-\frac{R T}{2 F} \ln \left(P_{\mathrm{CO} 2}\right) \quad \text { (Nernst Equation) }
$$

$\mathrm{E}_{\mathrm{c}}=$ constant cell potential under standard conditions [V]
$R=$ ideal gas constant $=8.31 \mathrm{~J} /(\mathrm{mol}-\mathrm{K})$
$\mathrm{T}=$ absolute temperature $[\mathrm{K}]$
$\mathrm{F}=$ Faraday constant $=9.65 \times 10^{4} \mathrm{C} / \mathrm{mol}$
$\mathrm{P}_{\mathrm{CO} 2}=$ partial pressure of CO_{2} gas

METAL OXIDE GAS SENSOR

- Adsorption of gas increases conductivity of material (e.g., SnO_{2})

http://intlsensor.com/pdf/ solidstate.pdf

N. Barsan and U. Weimar, Conduction Model of Metal Oxide Gas Sensors, J. Electroceramics, Dec 2001

CATALYTIC BEAD GAS SENSOR

- Presence of combustible gas increases resistance of sensor material (catalytic bead)

ELECTROCHEMICAL GAS SENSOR

- Reaction with gas produces a current that is proportional to the gas concentration

WHAT IS PARTIAL PRESSURE?

- Partial pressure is a way to express the concentration of a gas:

Partial pressure $=$ (total absolute pressure) \times (volume fraction of gas component)

- For low concentrations, we often use ppm or ppb:
- 1 ppm means 1 molecule (e.g., of CO_{2}) for 1 million molecules of gas
- 1 ppb means 1 molecule (e.g., of CO_{2}) for 1 billion molecules of gas
- Alternate form of ideal gas law: $P V=n R T=\left(\frac{m}{M}\right) R T$
- Mass per volume:

$$
\frac{\mathrm{m}}{\mathrm{~V}}=\frac{\mathrm{PM}}{\mathrm{RT}}
$$

m: mass
M: molar mass

EXAMPLE

Given $1 \% \mathrm{CO}_{2}$ at atmospheric pressure (101.325 kPa) and $25^{\circ} \mathrm{C}$ (298.15 K), calculate the following: Hint: Molar mass of $\mathrm{CO}_{2}=44 \mathrm{~g} / \mathrm{mol} ; \mathrm{R}=8.31447 \frac{\mathrm{~m}^{3} \cdot \mathrm{~Pa}}{\mathrm{~K} \cdot \mathrm{~mol}}$

- $\mathrm{ppm}=(0.01)^{*} 10^{6}=10^{4}$
- Partial pressure of $\mathrm{CO}_{2}=0.01^{*} 101.325 \mathrm{kPa}=1013.25 \mathrm{~Pa}$
- Mass per volume $=\frac{\mathrm{PM}}{\mathrm{RT}}=\frac{(1013.25 \mathrm{~Pa})(44 \mathrm{~g} / \mathrm{mol})}{\left(8.31447 \frac{\mathrm{~m}^{3} \cdot \mathrm{~Pa}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(298.15 \mathrm{~K})}=18 \mathrm{~g} / \mathrm{m}^{3}$

GAS COMPOSITION OF DRY AIR

- Nitrogen $\left(\mathrm{N}_{2}\right)$: 780,840 PPM
- Oxygen $\left(\mathrm{O}_{2}\right)$: 209,460 PPM
- Argon (Ar): 9,340 PPM
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$: 394 PPM
- Methane $\left(\mathrm{CH}_{4}\right): 1.79$ PPM
- Hydrogen $\left(\mathrm{H}_{2}\right): 0.55$ PPM
- Carbon monoxide (CO): 0.1 PPM
- Ozone $\left(\mathrm{O}_{3}\right)$: 0-0.07 PPM
* See the full list here: http://en.wikipedia.org/wiki/Atmosphere_of_Earth

LET'S LOOK AT SOME DATASHEETS

- Could you use any of the gas sensors for your rocket?

Consider:

- Minimum detection level
- Response time
- How could you compensate for long response times?
- Heater voltage
- Sensitivity ratio between gases

EXAMPLE: MG811 CO2 SENSOR

EXAMPLE: MQ131 O3 SENSOR

Temp: $20^{\circ} \mathrm{C}$
RH:65\%
$\left[\mathrm{O}_{2}\right]: 21 \%$
$\mathrm{R}_{\mathrm{L}}: 20 \mathrm{k} \Omega$

GAS SENSOR APPLICATIONS

- Air quality monitoring $\left(\mathrm{CO}_{2}, \mathrm{O}_{3}, \mathrm{CO}\right)$
- Smoke alarms $\left(\mathrm{CO}_{2}\right)$
- Mine and tunnel warning systems (CO_{2}, combustible gas)
- Greenhouses $\left(\mathrm{CO}_{2}\right)$
- Breathalyzer (Alcohol)
- Automotive applications $\left(\mathrm{O}_{2}, \mathrm{CO}_{2}\right)$

http://www.boschautoparts.com/OxygenSensors/Pages/
 OxygenSensorDesign.aspx

http://www.bosch.com/en/com/sustainability/issues/products_customers/ sustainable_mobility/co2_sensor_1.html

OUTLINE

- Gas Sensor
, Humidity Sensor
- Pressure Sensor
- Vibration Sensor

HUMIDITY SENSOR

Relative humidity (RH) describes the amount of water vapor in a mixture of air and water vapor.
$\mathrm{RH}=\frac{e_{\mathrm{w}}}{e_{\mathrm{w}}^{*}} \times 100 \%=\frac{\text { partial pressure of water vapor }}{\text { saturated vapor pressure of water at the given temp }}$
e_{W}^{*} is the maximum water vapor that the air can hold without condensing and is $f(T, P)$

ELECTRONIC HUMIDITY SENSORS

- Capacitive
- Resistive

Honeywell HCH-1000

HIH-4010

EMD-4000

- http://media.digikey.com/pdf/Data\ Sheets/Honeywell\ Sensing\ \& \%20Control\%20PDFs/HCH-1000\%20Series.pdf
- http://www.digikey.com/product-detail/en/HIH-4010-001/480-3536-ND/ 2503902?cur=USD
- http://veronics.com/products/Relative_humidity-sensors/emd_4000.pdf

HUMIDITY SENSOR

Capacitive RH sensor:

- Dielectric constant of a polymer or inorganic material changes as it absorbs water vapor
- Dielectric constants: 80 (water) vs. 3.4 (polyimide)
- More water \rightarrow higher capacitance

$$
C=\frac{\varepsilon A}{d}
$$

FIGURE 2: TYPICAL HUMIDITY RESPONSE
(Sensitivity $=\mathbf{0 . 6} \mathrm{pF} / \% \mathrm{RH}$)

HUMIDITY SENSOR

Resistive RH sensor:

- Electrical resistance of a material changes as it absorbs water vapor
- Typical materials: salts, conductive polymers
- Less sensitive than capacitive RH sensors
- Material properties also tend to depend both on humidity and temperature (in practice, must be combined with temperature sensor)

LET'S LOOK AT A DATASHEET

- What is the input range?
- What is the output range?
- What is the sensitivity?
- What is the response time?

OUTLINE

- Gas Sensor
- Humidity Sensor
- Pressure Sensor
- Vibration Sensor

PRESSURE SENSORS

- Force-based
- Piezoresistive: ΔR
- Piezoelectric: ΔV
- Capacitive: $\Delta \mathrm{C}$
- Others
- Resonance: $\Delta \mathrm{Q}$ (damping)
- Thermal (Pirani gauge)

Piezoresistive pressure sensor

PRESSURE SENSORS

- What is pressure?
e.g. atmospheric pressure at sea level is 101.325 kPa e.g. tire pressure gauge reads 0 PSI
e.g. pressure drop for flow measurement
- What kind of pressure do you want to measure?
- Absolute pressure sensor (compares to vacuum)
- Gauge pressure sensor (compares to ambient)
- Differential pressure sensor

ABSOLUTE PRESSURE SENSORS AS ALTIMETERS

Method \#1: $\Delta P=-\rho g \cdot \Delta h$

- Assumes density is constant over all height. Is this accurate?

Method \#2:

- Using the ideal gas law, $P V=n R T$

$$
\begin{aligned}
& \rho=\frac{\text { mass }=n M}{\text { volume }=\frac{n R T}{P}}=\frac{M P}{R T} \\
& P(h)=P_{0} \exp \left(-\frac{M g}{R T} h\right)
\end{aligned}
$$

M: Molar Mass
n : Number of moles
T: Temperature
P: Pressure
h: Altitude

- Accounts for changing density, but not temperature, with height

BUT TEMPERATURE CHANGES WITH HEIGHT!

A MORE ACCURATE MODEL...

Method \#3:
where

$$
h=\frac{T_{0}}{-(d T / d h} \cdot\left[1-\left(\frac{P_{0}}{P}\right)^{\frac{(d T / d h)^{R}}{g M}}\right]
$$

- $h=$ altitude (above sea level) (in meters)
- $P_{0}=$ standard atmosphere pressure $=101.325 \mathrm{kPa}$
- $T_{0}=288.15 \mathrm{~K}\left(+15^{\circ} \mathrm{C}\right)$
- $\mathrm{dT} / \mathrm{dh}=-0.0065 \mathrm{~K} / \mathrm{m}$: thermal gradient or standard temperature lapse rate
- $R=$ gas constant ($8.31432 \mathrm{~N}^{\star} \mathrm{m} / \mathrm{mol}^{*} \mathrm{~K}$)
- $g=\left(9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$
- $M=$ molar mass of earth's air ($0.0289644 \mathrm{~kg} / \mathrm{mol}$)

A MORE ACCURATE MODEL...

Plug in all the constants
Method \#3:

$$
h=4.43 \times 10^{4} \times\left(1-\left(\frac{101.325 \mathrm{kPa}}{P}\right)^{-0.1902}\right)
$$

- h is measured in meters.
- Equation calibrated up to 36,090 feet $(11,000 \mathrm{~m})$.
- Reference: http://en.wikipedia.org/wiki/Atmospheric_pressure
- Different values of $\mathrm{dT} / \mathrm{dh}$ for different layers of the atmosphere

EXAMPLE

Suppose, $\mathrm{P}=85 \mathrm{kPa}$ (from Pressure sensor)
Method 1:

$$
\Delta h=-\frac{\Delta P}{\rho g}=-\frac{(85-101) \mathrm{kPa}}{\left(1.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} * 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}=1.36 \mathrm{~km}
$$

Method 2:

$$
h=-\frac{R T}{M g} \ln \left(\frac{P}{P_{0}}\right)=-8440 \ln \left(\frac{85 \mathrm{kPa}}{101 \mathrm{kPa}}\right)=1.46 \mathrm{~km}
$$

Method 3:

$$
h=4.43 \times 10^{4} \times\left(1-\left(\frac{101.325 \mathrm{kPa}}{85 \mathrm{kPa}}\right)^{-0.1902}\right)=1.43 \mathrm{~km}
$$

LET'S LOOK AT A DATASHEET

- What is the input range?
- What is the sensitivity?
- What is the supply voltage?
- What is the offset voltage?

MPXA6115AC7U

- What is the full scale output?
- What is the output range?
- Note: the fully integrated pressure sensor has gain stage and temperature compensation inside (signal conditioning is done already)

OUTLINE

- Gas Sensor
- Humidity Sensor
- Pressure Sensor
- Vibration Sensor

VIBRATION SENSORS

Examples:

- Piezoelectric films ($\Delta \mathrm{V}$)
- Strain gauges ($\Delta \mathrm{R}$)
metal foil strain gauge

What happens when you pull on a piece of metal?

$$
R=\rho \frac{L}{A}
$$

- http://www.digikey.com/Scripts/US/DKSUS.dII?Detail\&name=MSP1006-ND
- http://www.eng.hmc.edu/NewE80/PDFs/PiezoSensors.pdf
- http://en.wikipedia.org/wiki/Strain_\(physics\)
- http://www.vishaypg.com/micro-measurements/transducer-class-strain-gages/
- http://www.sparkfun.com/datasheets/Sensors/Flex/MSI-techman.pdf

ACCELEROMETERS AS VIBRATION SENSORS

- Full-scale range
- Number of axes
- Interface (analog, digital, pulse output)
- Bandwidth (50-100 Hz)
- Power consumption (supply voltage)

http://www.sparkfun.com/datasheets/Components/General/MMA7361L.pdf
https://www.sparkfun.com/products/9652

EXAMPLE: VIBRATION SENSOR

Suggestion: Use the vibration sensor in the Op Amp Lab for your rocket

VIBRATION SENSOR APPLICATIONS

- Vibration Sensing in Washing Machine
- Low Power Wakeup Switch
- Car Alarms
- Body Movement
- Security Systems
- Digital Cameras
- iPhone

NOW WHAT?

(1) What are your science/engineering goals?
(2) What sensors will you use to achieve your goals?

- E80 website (Final Project) has a list of potential sensors
(3) What circuits will you need?
- Sensors need power
- Voltage regulators
- Sensor outputs need to interface with the data logger
- Amplifiers
- Buffers
- Anti-aliasing filters

