

SENSORS AND TRANSDUCERS

Prof. Katherine Candler E80 - Spring 2013

(Notes adapted from Prof. Qimin Yang's lecture, Spring 2011)

WHAT COULD YOU FLY WITH YOUR ROCKET?

http://www.eng.hmc.edu/NewE80/FlightVideos.html

(just for fun): <u>http://www.youtube.com/watch?v=MQwLmGR6bPA</u>

1

BRAINSTORM

What sort of data might you want to collect from your rocket?

BRAINSTORM

- Atmospheric phenomena
 - Temperature
 - Humidity
 - Pressure
 - Trace gas concentration
 - Dust concentration
 - Particle concentration

- Rocket performance data
 - Altitude
 - Velocity
 - Acceleration
 - Vibration
 - Rotation rate
 - Internal temperatures

OUTLINE

- Gas Sensor
- Humidity Sensor
- Pressure Sensor
- Vibration Sensor

IMPORTANT SENSOR SPECIFICATIONS

- What characteristics are important to consider when selecting a sensor?
 - Input range
 - Output range
 - Supply voltage
 - Sensitivity
 - Operating temperature range
 - Response time
 - Accuracy
 - Size
 - Cost

GAS SENSORS

- Solid electrolyte sensors [NO₂, CO₂, O₂]
- Metal oxide sensors [combustible & toxic gases]
- Catalytic bead sensors [combustible gases]
- Electrochemical sensors [toxic gases & oxygen]

http://www.futurlec.com/Gas_Sensors.shtml

http://www.digikey.com/catalog/en/partgroup/gas-sensors/14553

SOLID ELECTROLYTE GAS SENSOR

Presence of gas (e.g., CO₂) leads to chemical reactions Cathode: $2Li^{+} + CO_{2} + \frac{1}{2}O_{2} + 2e^{-} = Li_{2}CO_{3}$ $2Na^{+} + \frac{1}{2}O_{2} + 2e^{-} = Na_{2}O$ Overall chemical reaction: $Li_{2}CO_{3} + 2Na^{+} = Na_{2}O + 2Li^{+} + CO_{2}$

Chemical reactions generate an EMF:

$$EMF = E_c - \frac{RT}{2F} \ln(P_{CO2})$$
 (Nernst Equation)

 E_c = constant cell potential under standard conditions [V] R = ideal gas constant = 8.31 J/(mol-K) T = absolute temperature [K] F = Faraday constant = 9.65 x 10⁴ C/mol P_{CO2} = partial pressure of CO₂ gas

http://chemistry.about.com/od/electrochemistry/a/nernstequation.htm

METAL OXIDE GAS SENSOR

Adsorption of gas increases conductivity of material (e.g., SnO₂)

http://intlsensor.com/pdf/ solidstate.pdf

N. Barsan and U. Weimar, Conduction Model of Metal Oxide Gas Sensors, J. Electroceramics, Dec 2001

CATALYTIC BEAD GAS SENSOR

 Presence of combustible gas increases resistance of sensor material (catalytic bead)

ELECTROCHEMICAL GAS SENSOR

 Reaction with gas produces a current that is proportional to the gas concentration

http://www.intlsensor.com/pdf/electrochemical.pdf

WHAT IS PARTIAL PRESSURE?

Partial pressure is a way to express the concentration of a gas:

Partial pressure = (total absolute pressure) x (volume fraction of gas component)

- For low concentrations, we often use ppm or ppb :
 - 1 ppm means 1 molecule (e.g., of CO₂) for 1 million molecules of gas
 - 1 ppb means 1 molecule (e.g., of CO_2) for 1 billion molecules of gas
- Alternate form of ideal gas law: $PV = nRT = \left(\frac{m}{M}\right)RT$
 - Mass per volume: <u>m_PM</u>

m: mass

M: molar mass

EXAMPLE

Given 1% CO₂ at atmospheric pressure (101.325 kPa) and 25°C (298.15 K), calculate the following: Hint: Molar mass of CO₂ = 44 g/mol; R = 8.31447 $\frac{\text{m}^3 \cdot \text{Pa}}{\text{K} \cdot \text{mol}}$

• ppm =
$$(0.01)$$
*10⁶=10⁴

- Partial pressure of $CO_2 = 0.01*101.325$ kPa = 1013.25 Pa
- Mass per volume = $\frac{PM}{RT} = \frac{(1013.25 \text{ Pa})(44 \text{ g/mol})}{(8.31447 \frac{\text{m}^3 \cdot \text{Pa}}{\text{K} \cdot \text{mol}})(298.15 \text{ K})} = 18 \text{ g/m}^3$

12

GAS COMPOSITION OF DRY AIR

- Nitrogen (N₂): 780,840 PPM
- Oxygen (O₂): 209,460 PPM
- Argon (Ar): 9,340 PPM
- Carbon dioxide (CO₂): 394 PPM
- Methane (CH₄): 1.79 PPM
- Hydrogen (H₂): 0.55 PPM
- Carbon monoxide (CO): 0.1 PPM
- ▶ Ozone (O₃): 0 0.07 PPM
- * See the full list here: <u>http://en.wikipedia.org/wiki/Atmosphere_of_Earth</u>

LET'S LOOK AT SOME DATASHEETS

Could you use any of the gas sensors for your rocket?

Consider:

- Minimum detection level
- Response time

Recall in dry air: CO_2 : 394 PPM O_3 : 0 – 0.07 PPM

- How could you compensate for long response times?
- Heater voltage
- Sensitivity ratio between gases

http://www.futurlec.com/Ozone_Gas_Sensor.shtml http://www.futurlec.com/CO2_Sensor.shtml

EXAMPLE: MG811 CO₂ SENSOR

EXAMPLE: MQ131 O₃ SENSOR

http://www.futurlec.com/Ozone_Gas_Sensor.shtml

GAS SENSOR APPLICATIONS

- Air quality monitoring (CO_2, O_3, CO)
- Smoke alarms (CO₂)
- Mine and tunnel warning systems (CO₂, combustible gas)
- Greenhouses (CO₂)
- Breathalyzer (Alcohol)
- Automotive applications (O₂, CO₂)

http://www.boschautoparts.com/OxygenSensors/Pages/ OxygenSensorDesign.aspx

http://www.bosch.com/en/com/sustainability/issues/products_customers/ sustainable_mobility/co2_sensor_1.html

OUTLINE

- Gas Sensor
- Humidity Sensor
- Pressure Sensor
- Vibration Sensor

HUMIDITY SENSOR

Relative humidity (RH) describes the amount of water vapor in a mixture of air and water vapor.

 $\mathsf{RH} = \frac{e_{\mathsf{w}}}{e_{\mathsf{w}}^*} \times 100\% = \frac{\text{partial pressure of water vapor}}{\text{saturated vapor pressure of water at the given temp}}$

 e_{W}^{*} is the maximum water vapor that the air can hold without condensing and is f(T, P)

http://en.wikipedia.org/wiki/Relative_humidity http://en.wikipedia.org/wiki/Hygrometer

ELECTRONIC HUMIDITY SENSORS

- Capacitive
- Resistive

Honeywell HCH-1000

HIH-4010

EMD-4000

- http://media.digikey.com/pdf/Data%20Sheets/Honeywell%20Sensing%20& %20Control%20PDFs/HCH-1000%20Series.pdf
- http://www.digikey.com/product-detail/en/HIH-4010-001/480-3536-ND/ 2503902?cur=USD
- http://veronics.com/products/Relative_humidity-sensors/emd_4000.pdf

HUMIDITY SENSOR

Capacitive RH sensor:

- Dielectric constant of a polymer or inorganic material changes as it absorbs water vapor
- Dielectric constants: 80 (water) vs. 3.4 (polyimide)
- More water \rightarrow higher capacitance

HUMIDITY SENSOR

Resistive RH sensor:

- Electrical resistance of a material changes as it absorbs water vapor
- Typical materials: salts, conductive polymers
- Less sensitive than capacitive RH sensors
- Material properties also tend to depend both on humidity and temperature (in practice, must be combined with temperature sensor)

LET'S LOOK AT A DATASHEET

- What is the input range?
- What is the output range?
- What is the sensitivity?
- What is the response time?

OUTLINE

- Gas Sensor
- Humidity Sensor
- Pressure Sensor
- Vibration Sensor

PRESSURE SENSORS

- Force-based
 - Piezoresistive: ΔR
 - Piezoelectric: ΔV
 - Capacitive: ΔC
- Others
 - Resonance: ΔQ (damping)
 - Thermal (Pirani gauge)

Piezoresistive pressure sensor

PRESSURE SENSORS

- What is pressure?
 - e.g. atmospheric pressure at sea level is 101.325 kPa e.g. tire pressure gauge reads 0 PSI
 - e.g. pressure drop for flow measurement
- What kind of pressure do you want to measure?
 - Absolute pressure sensor (compares to vacuum)
 - Gauge pressure sensor (compares to ambient)
 - Differential pressure sensor

ABSOLUTE PRESSURE SENSORS AS ALTIMETERS

Method #1: $\Delta P = -\rho g \cdot \Delta h$

• Assumes density is constant over all height. Is this accurate?

Method #2:

• Using the ideal gas law, PV = nRT

$$\rho = \frac{\text{mass} = nM}{\text{volume} = \frac{nRT}{P}} = \frac{MP}{RT}$$
$$P(h) = P_0 \exp\left(-\frac{Mg}{RT}h\right)$$

M: Molar Mass n: Number of moles T: Temperature P: Pressure h: Altitude

• Accounts for changing density, but not temperature, with height

http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/barfor.html

BUT TEMPERATURE CHANGES WITH HEIGHT!

A MORE ACCURATE MODEL...

Method #3:

$$h = \frac{T_0}{-\left(\frac{dT}{dh}\right)} \cdot \left[1 - \left(\frac{P_0}{P}\right)^{\frac{\left(\frac{dT}{dh}\right)R}{gM}}\right]$$

where

- h = altitude (above sea level) (in meters)
- P₀ = standard atmosphere pressure= 101.325kPa
- $T_0 = 288.15 \text{K} (+15^{\circ} \text{C})$
- dT/dh= 0.0065 K/m: thermal gradient or standard temperature lapse rate
- R = gas constant (8.31432 N*m/mol*K)
- $g = (9.80665 \text{ m/s}^2)$
- M = molar mass of earth's air (0.0289644 kg/mol)

A MORE ACCURATE MODEL...

Plug in all the constants

Method #3:

$$h = 4.43 \times 10^4 \times \left(1 - \left(\frac{101.325 \text{kPa}}{P}\right)^{-0.1902}\right)$$

- h is measured in meters.
- Equation calibrated up to 36,090 feet (11,000m).
- Reference: http://en.wikipedia.org/wiki/Atmospheric_pressure
- Different values of dT/dh for different layers of the atmosphere

EXAMPLE

Suppose, P = 85 kPa (from Pressure sensor)

Method 1:

$$\Delta h = -\frac{\Delta P}{\rho g} = -\frac{(85 - 101)kPa}{(1.2\frac{kg}{m^3} * 9.8\frac{m}{s^2})} = 1.36 \ km$$

Method 2:

$$h = -\frac{RT}{Mg}\ln(\frac{P}{P_0}) = -8440\ln(\frac{85kPa}{101kPa}) = 1.46km$$

Method 3:

$$h = 4.43 \times 10^{4} \times \left(1 - \left(\frac{101.325 \, kPa}{85 \, kPa}\right)^{-0.1902}\right) = 1.43 \, km$$

LET'S LOOK AT A DATASHEET

- What is the input range?
- What is the sensitivity?
- What is the supply voltage?
- What is the offset voltage?
- What is the full scale output?
- What is the output range?
- Note: the fully integrated pressure sensor has gain stage and temperature compensation inside (signal conditioning is done already)

MPXA6115AC7U

http://www.mouser.com/ds/2/161/MPXA6115A-66934.pdf

OUTLINE

- Gas Sensor
- Humidity Sensor
- Pressure Sensor
- Vibration Sensor

VIBRATION SENSORS

Examples:

- Piezoelectric films (ΔV)
- Strain gauges (ΔR)

metal foil strain gauge

What happens when you pull on a piece of metal?

ACCELEROMETERS AS VIBRATION SENSORS

- Full-scale range
- Number of axes
- Interface (analog, digital, pulse output)
- Bandwidth (50-100 Hz)
- Power consumption (supply voltage)

http://www.sparkfun.com/datasheets/Components/General/MMA7361L.pdf

https://www.sparkfun.com/products/9652

EXAMPLE: VIBRATION SENSOR

Suggestion: Use the vibration sensor in the Op Amp Lab for your rocket

VIBRATION SENSOR APPLICATIONS

- Vibration Sensing in Washing Machine
- Low Power Wakeup Switch
- Car Alarms
- Body Movement
- Security Systems
- Digital Cameras
- iPhone

NOM MHALS

- (1) What are your science/engineering goals?
- (2) What sensors will you use to achieve your goals?
 - E80 website (Final Project) has a list of potential sensors
- (3) What circuits will you need?
 - Sensors need power
 - Voltage regulators
 - Sensor outputs need to interface with the data logger
 - Amplifiers
 - Buffers
 - Anti-aliasing filters

http://www.youtube.com/watch?v=2Ax64jfeVCc