Spray Painting on Linde Field on Saturday, 9 April 2016 from 1 pm to 3 pm.

## E80 Spring 2016 FIELD TESTS & FLIGHT SAFETY

## This Week

- Transfer breadboard circuit to PC board.
- Verify everything still works.
- Get data logger working.
- Pass off consists of:
  - Power PC board with data logger & start logging.
  - Test each sensor.
  - Stop logging and display logged data on computer.

## Next Week

- Finish all circuit and rocket construction.
- Test that everything works.
- Go through complete launch checklist.
- Prep your motors.
- Make sure you've tested and practiced everything.

## Before you get on the bus

- Practice the rocket checklist.
- Practice electronics prep.
- Practice recovery and analysis.
- You'll want to do analysis between flights.
- Practice anything else you'll need to do in the field.

## **Rocket Modifications**

- Longer Payload Section
- Longer body tube for I205W.

### Fiberglass

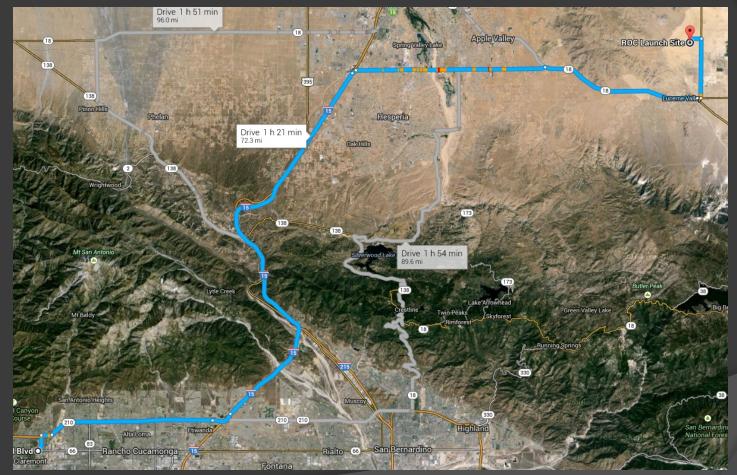
http://www.aerotechrocketry.com/customersite/resource\_library/Instructions/Kit\_Instructions/arreaux\_in\_8-04.pdf

Longer Motor Mount

Motor Retainer instead of Motor Hook, Thrust Ring, & Thrust Ring Flange

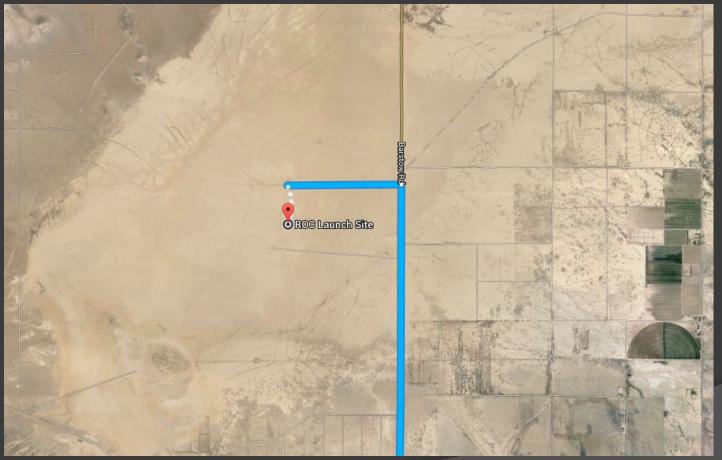
## Flight Dates

- 16APR 2016
- 23APR 2016
  - Meet in Parsons Parking Lot
  - Buses leave at 6 AM sharp
  - All teams expected to go
  - Bring your rocket
  - We will have food, water, & sunscreen


## 9 APR 2015 (Optional)

- ROC Monthly Launch
   A
   Second State
   A
   Second State
   Second State
- FIII out <u>Liability Waiver</u> and take with you.
- Level 1 cert
- Test Flight
- There are <u>rocket supply vendors</u> on site.

## 16, 23 APR 2015


- Must fill out checklist & E80 Flight Card (we will have them for you).
- Might want team checklist.
- You may launch personal projects after your team finishes their launch.
- We will have set up:
  - Tables
  - Computers
  - Canopies
  - Low power and high power launch stands
  - PA system

## Launch Site



https://goo.gl/maps/Wfgqg

## Lucerne Valley Dry Lake Bed



https://goo.gl/maps/Wfgqg

## Weather Conditions

- Can range from cold (upper 20's) to hot (mid 80's)
- Usually sunny and clear (high to very high UV index)
- We cannot launch if:
  - Wind >20 mph
  - Precipitation
  - Actual lake or mud
  - Clouds lower than 5000 feet AGL

## **Risk Mitigation**

- About ½ of the time, one of the two Saturday launches gets scrubbed.
- If it's the first Saturday, all four launches on second Saturday and return delayed.
- If second Saturday scrub looks likely, you may fly three motors first Saturday.
- If second Saturday scrub looks certain, all four launches on first Saturday and return delayed.

## Dress Code

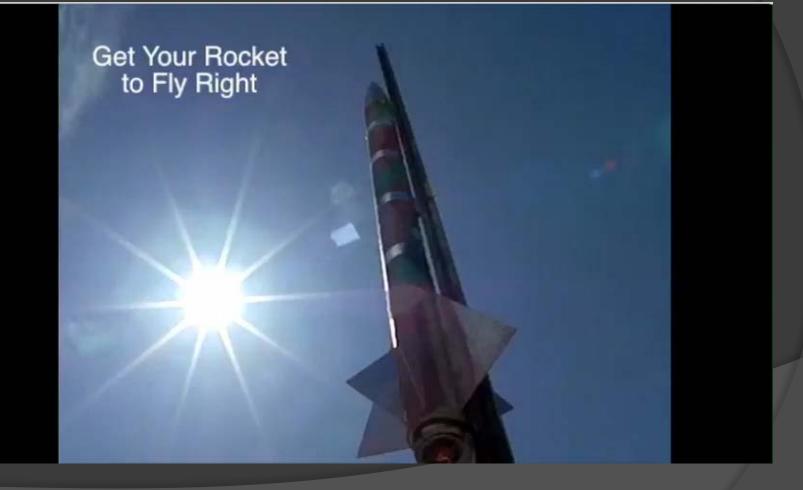
- Long pants required, cotton recommended (I know, just deal with it)
- Close-toed shoes required
- Hats recommended
- Sunglasses recommended
- Safety glasses required around motors and loaded rockets
- We will bring sunscreen

## High Power Safety Codes

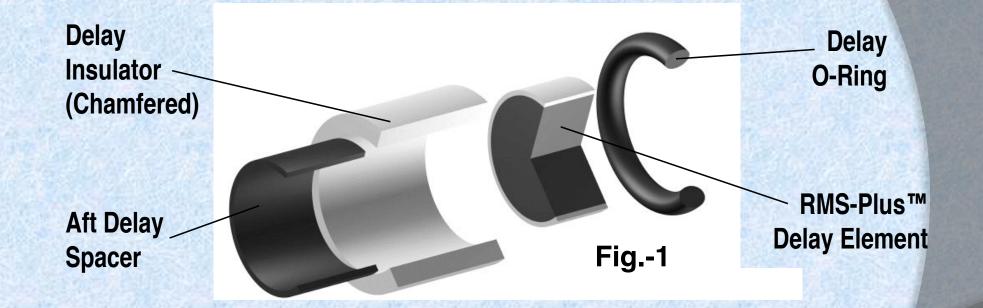
- Tripoli Rocketry Association(TRA)
- <u>National Association of Rocketry</u> (NAR)

## **Distance** Table

|         | •          | Minimum Site |     | Minimum Personnel<br>Distance (Complex<br>Rocket) (ft.) |
|---------|------------|--------------|-----|---------------------------------------------------------|
| 1.25    | 1/4A, 1/2A | 50           | 15  | 15                                                      |
| 2.50    | A          | 100          | 15  | 15                                                      |
| 5.00    | В          | 200          | 15  | 15                                                      |
| 10.00   | С          | 400          | 15  | 15                                                      |
| 20.00   | D          | 500          | 15  | 15                                                      |
| 40.00   | E          | 1,000        | 30  | 30                                                      |
| 80.00   | F          | 1,000        | 30  | 30                                                      |
| 160.00  | G          | 1,000        | 30  | 30                                                      |
| 320.00  | Н          | 1,500        | 100 | 200                                                     |
| 640.00  | I          | 2,500        | 100 | 200                                                     |
| 1280.00 | J          | ½ max alt    | 100 | 200                                                     |
| 2560.00 | К          | ½ max alt    | 200 | 300                                                     |

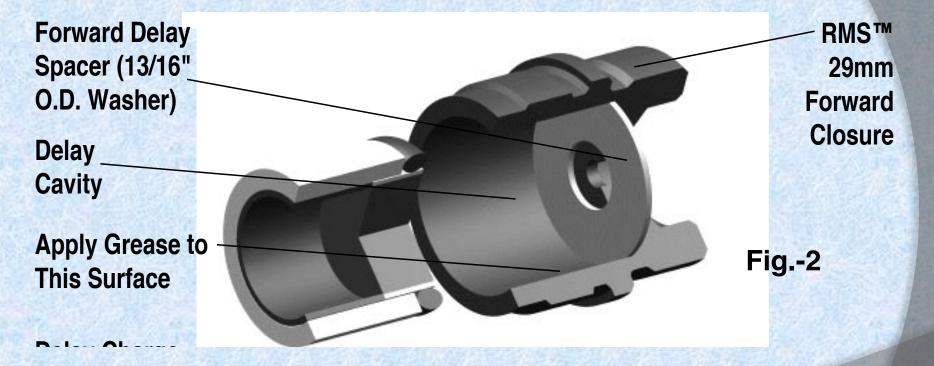

## **Our Safety Rules**

- Follow the checklist.
- Obey all PA announcements.
- Drink plenty of water.
- Wear safety glasses around motors, black powder, and loaded rockets.
- Never point loaded rocket at anyone.
- Igniter goes in motor as last thing on launch pad.


# From countdown until safe 'chute deployment

- Everyone on their feet
- Everyone watches rocket

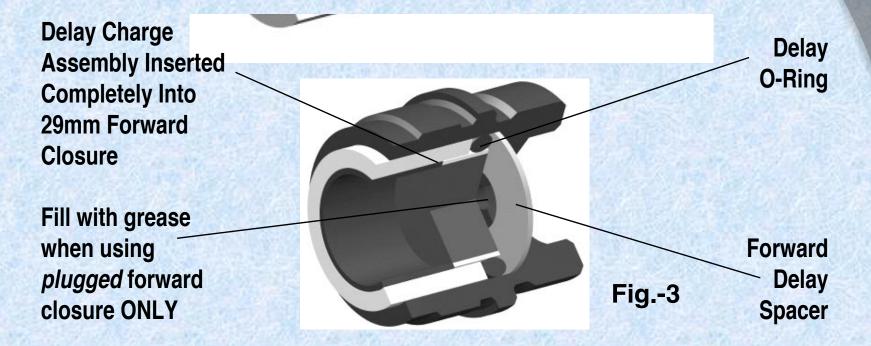
## Flight Safety Video




## The Delay Grain



### Don't get grease on the Delay Element http://www.aerotech-rocketry.com/customersite/resource\_library/Instructions/HP-RMS\_Instructions/29mm/29\_120-240w\_in\_20051.pdf


## The Delay Grain (cont.)



### Don't get grease on the Forward Delay Spacer.

http://www.aerotech-rocketry.com/customersite/resource\_library/Instructions/HP-RMS\_Instructions/29mm/29\_120-240w\_in\_20051.pdf

## The Delay Grain (cont.)



### Make sure the Aft Delay Spacer is behind the Delay Grain.

http://www.aerotech-rocketry.com/customersite/resource\_library/Instructions/HP-RMS\_Instructions/29mm/29\_120-240w\_in\_20051.pdf

We have the following Long
Delays (14 seconds)
RDK-06 – H238T, H165R
RDK-07 – H128W, G79W

## How to Set the Delay Time (1) Set the delay time to 10 seconds for "M". Set to 14 seconds for "14A" or "L".

|    | Mfg. 🔺   | Engine<br>code | Diameter<br>mm | Length<br>In. | Burn<br>Sec. | Total impulse<br>N-Sec. | Average thrust<br>Newtons |
|----|----------|----------------|----------------|---------------|--------------|-------------------------|---------------------------|
| 48 | Aerotech | G75J           | 29.00          | 7.6772        | 2.20         | 161.429                 | 73.377                    |
| 49 | Aerotech | G79W           | 29.00          | 5.9000        | 1.42         | 107.054                 | 75.390                    |
| 50 | Aerotech | G75M           | 29.00          | 4.8819        | 1.97         | 119.265                 | 60.510                    |
| 51 | Aerotech | G76G           | 29.00          | 4.8819        | 2.00         | 114.503                 | 57.226                    |
| 52 | Aerotech | G78G           | 29.00          | 5.7480        | 1.47         | 109.782                 | 74.585                    |
| 53 | Aerotech | G80T           | 29.00          | 5.0394        | 1.81         | 133.244                 | 73.701                    |
| 54 | Aerotech | G104T          | 29.00          | 4.9213        | 0.90         | 82.862                  | 92.069                    |
| 55 | Aerotech | G339N          | 38.00          | 3.8189        | 0.36         | 112.085                 | 312.214                   |
| 56 | Aerotech | G35EJ          | 29.00          | 3.8583        | 2.91         | 100.956                 | 34.693                    |
| 57 | Aerotech | G38FJ          | 29.00          | 4.8819        | 2.64         | 86.818                  | 32.886                    |
| 58 | Aerotech | G53FJ          | 29.00          | 4.8819        | 1.85         | 92.148                  | 49.810                    |
| 59 | Aerotech | G12T-RC        | 32.00          | 4.2126        | 8.55         | 87.216                  | 10.201                    |
| 60 | Aerotech | H128W          | 29.00          | 7.6772        | 1.50         | 155.795                 | 103.863                   |
| 61 | Aerotech | H165R          | 29.00          | 7.6378        | 1.05         | 160.882                 | 153.221                   |
| 62 | Aerotech | H55W           | 29.00          | 7.5197        | 2.75         | 161.231                 | 58.693                    |

## How to Set the Delay Time (2)

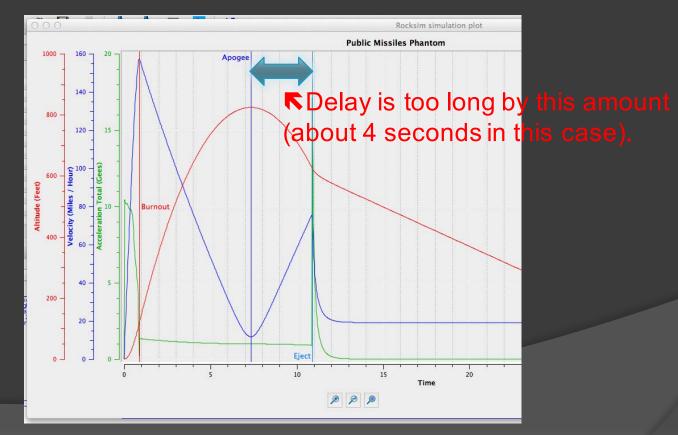
### Set Flight Event to Deploy at Max. ejection delay

| 0 | 0         |             |               | Rocksim sin             | nulation prop | erties. |                |                      |
|---|-----------|-------------|---------------|-------------------------|---------------|---------|----------------|----------------------|
| _ | Engine    | e selection | Flight events | Simulation controls     | Starting sta  | te Lau  | nch conditions | Competition settings |
|   | Stage     | Device      | Event des     | cription                | Time (        | 5)      | Altitude (Ft.) |                      |
| L | Sustainer | P: Parach   | ute Deploy    | at Max. ejection delay. | :)            | 0.00    | 0.00           |                      |
|   |           |             |               |                         |               |         |                |                      |
|   |           |             |               |                         |               |         |                |                      |
|   | _         |             |               |                         |               |         |                |                      |
|   |           |             |               |                         |               |         |                |                      |
|   |           |             |               |                         |               |         |                |                      |
|   |           |             |               |                         |               |         |                |                      |
|   |           |             |               |                         |               |         |                |                      |
|   |           |             |               |                         |               |         |                |                      |

## How to Set the Delay Time (3)

### • Set Launch guide length to 48 or 60 In.

| 00                  | 10       | 4             | Rocksim sin         | nulation propertie | 25.               | ta de                |
|---------------------|----------|---------------|---------------------|--------------------|-------------------|----------------------|
| Engine se           | election | Flight events | Simulation controls | Starting state     | Launch conditions | Competition settings |
| Launch guide length | 36.000   | 00            |                     | In                 |                   |                      |
|                     |          | 1             | $\bigcirc$          |                    |                   |                      |
| Launch angle        | : 0.000  |               |                     | De                 | eg.               |                      |
|                     |          |               |                     |                    |                   |                      |
|                     |          |               |                     |                    |                   |                      |
|                     |          |               |                     |                    |                   |                      |


## How to Set the Delay Time (4)

### • Set Launch conditions to those at your launch site.

| Engine selecti           | on Flight events    | Simulation c | ontrols Starting state | Launc    | h conditions         | Competition setti | ngs | _    |
|--------------------------|---------------------|--------------|------------------------|----------|----------------------|-------------------|-----|------|
| Altitude:                | 3000.00000          | Ft. ‡        | Cloud co               | verage:  | Sunny (0-109         | 6                 |     | ¢    |
| % Relative humidity:     | 25.00               |              | Cloud cover lo         | w limit: | 0.0000               |                   |     |      |
| Temperature:             | 72.00               | Deg. F ‡     | Cloud cover hig        | h limit: | 0.1000               |                   |     |      |
| Barometric pressure:     | 1.013               | Bar ‡        | Thermal posit          | ioning:  | Random posi          | tion ‡            |     |      |
| Latitude:                | 0.000               | Deg. ‡       | First thermal po       | osition: | 0.00000              |                   | Ft. | ŧ    |
| Wind conditions:         | L                   | +            | Thermal dia            | meter:   | 984.25197            |                   | Ft. | ÷    |
| Low wind speed:          |                     | MPH ‡        | Thermal                | height:  | 6561.67980           |                   | Ft. | ÷    |
| High wind speed:         | 7.9000              | MPH \$       | Thermal st             | rength:  | Low strength         | (3.5 MPH) ‡       |     |      |
| Wind turbulence:         | Fairly constant spe |              | Thermal strength/      | speed:   |                      |                   | MPH | ÷    |
| Wind change frequency:   |                     |              | Maximum number of the  | armals   | Allow multi          | ple thermals      |     |      |
| Wind starts at altitude: | 0.00000             | Ft. ‡        | Interthermal di        |          | -                    |                   | Ft. | ÷    |
|                          |                     |              |                        |          | 1.0.7.2.1.7.2.1.7.2. |                   |     |      |
| omments:                 |                     |              |                        |          |                      |                   |     |      |
| Help N?                  |                     |              |                        | Flig     | ht profile           | Launch OK         |     | ance |

## How to Set the Delay Time (5)

### Olick Launch and then plot your results.



### Adjust the Delay, RMS vs. DMS

- The RMS motors use the metal reusable cases.
  - Adjust the delay as first step in assembly.
  - Use the RMS Delay Drilling Tool.
  - The drilled end faces the propellant grains.
- The DMS are single use motors.
  - Adjust the delay as first step in assembly.
  - Use the Universal Delay Drilling Tool.

## **RMS Delay Drilling Tool**

Use the Delay Drilling Tool on your delay grain.
The drilled end faces the propellant grain(s).



http://www.aerotech-rocketry.com/uploads/76469aad-577b-4972-a6b6-6f955effb89b\_Drill%20Tool%201\_640.jpg

## Adjust the Delay DMS (1)



1.1 **WARNING:** Do not smoke and ensure that there are no open flames or heat sources nearby when setting the time delay. Assemble the AeroTech Universal delay drilling tool with the desired amount of delay time removal (i.e., the - 4 or - 8 seconds removal marked on the tool label) facing the exposed drill bit and motor bulkhead.

#### Washer



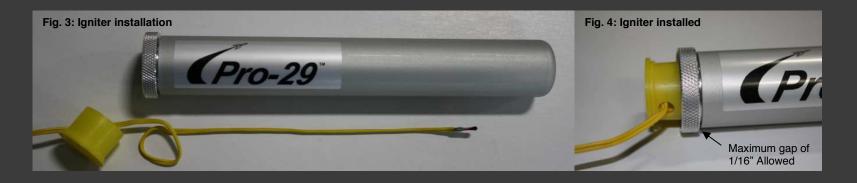
1.2 **Optional:** Place the washer between the drill knob and the tool if you want to remove 2 seconds less than the value printed on the tool (i.e., - 2 or - 6 seconds removal). **CAUTION: Do not** shorten the time delay to a value of less than 6 seconds.

http://www.aerotech-rocketry.com/uploads/13a7ea1c-0211-44d4-8954-b76c23bd97ea\_DMS%20Instructions%207-9-14%20Small.pdf

## Adjust the Delay DMS (2)

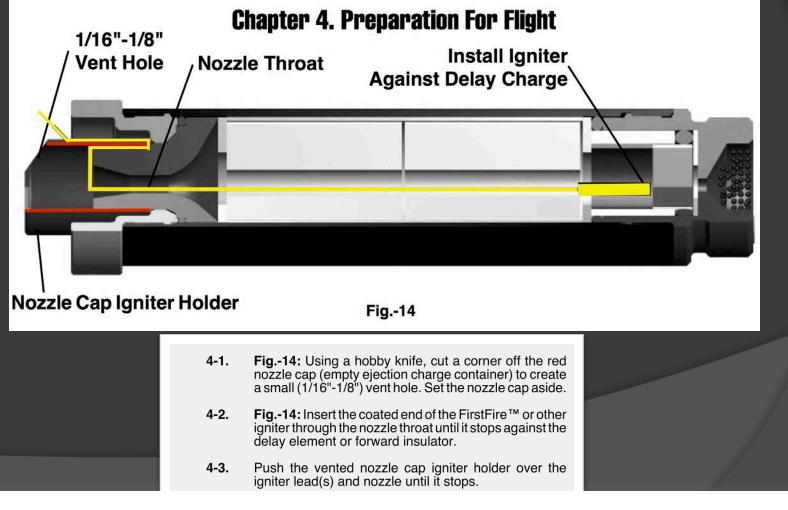


1.3 Place the open end of the tool over the motor bulkhead, hold the tool and motor firmly against each other and turn the drill knob several times clockwise until the drill knob sits flush against the drill tool body.

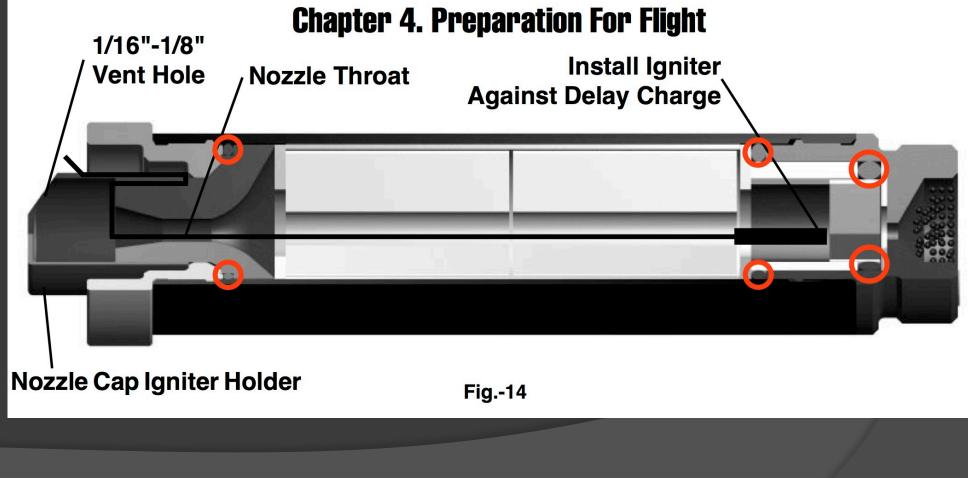

1.4 Remove the tool and shake out the shavings from the tool and motor bulkhead. Collect the shavings to give to a proctor or professor for proper disposal.

http://www.aerotech-rocketry.com/uploads/13a7ea1c-0211-44d4-8954-b76c23bd97ea\_DMS%20Instructions%207-9-14%20Small.pdf

## Flight Safety Video II

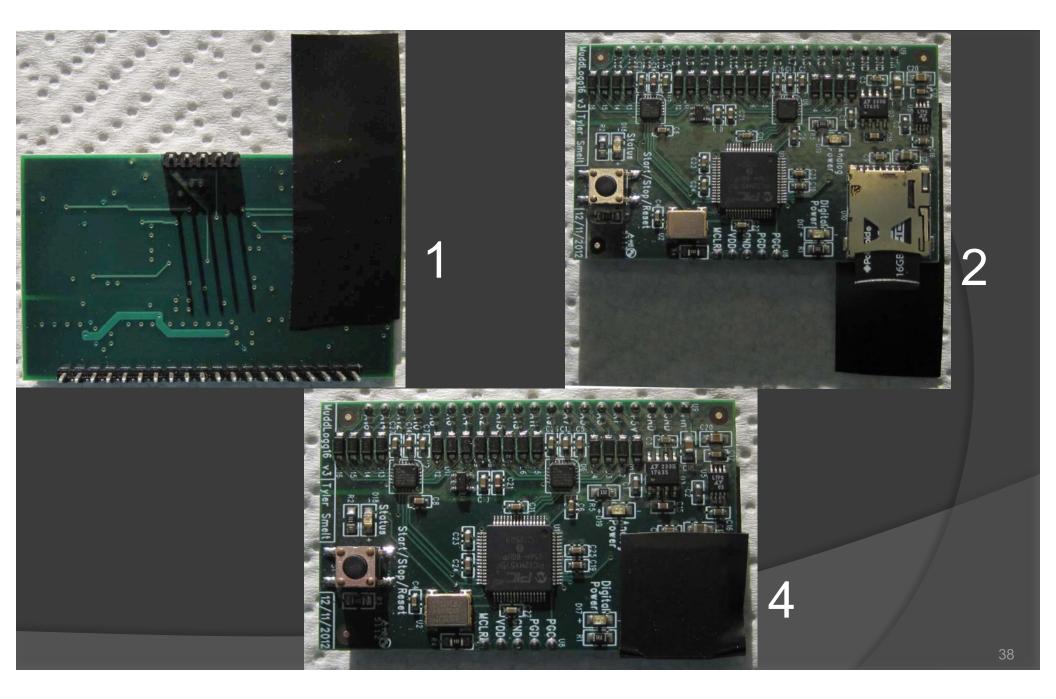

| 1/16"-1/8" <b>Chapter 4. P</b> | Preparation For Flight                  |  |
|--------------------------------|-----------------------------------------|--|
| Vent Hole Nozzle Throat        | Install Igniter<br>Against Delay Charge |  |
|                                |                                         |  |
| Nozzle Cap Igniter Holder      | Fig14                                   |  |
|                                |                                         |  |
|                                |                                         |  |
|                                |                                         |  |

## **CTI-Style Igniter Installation**




- Carefully uncoil the igniter leads. Remove any kinks or twists and straighten the wires for about 24" (60 cm) from the igniter head. Remove the yellow nozzle cap from the motor and feed the shunted ends of the igniter leads through the inside of the nozzle cap and out through the hole.
- Insert the igniter head into the nozzle and push until it stops against the igniter pellet. With the igniter in this position, bend a loop into the igniter leads one cap length from the nozzle exit (Figure 3 igniter shown outside motor for indication of approximate location of the igniter pellet).
- Slide the nozzle cap up to the loop made in the previous step and firmly push the yellow nozzle cap over the nozzle and loop previously made -to retain the igniter (Figure 4).
- Remove the shunt and separate the wire leads ONLY while the rocket is installed on the pad and the launch control system is rendered safe (i.e. disarmed and shunted where applicable).

# Aerotech-Style Igniter Installation (Deprecated)




## Aerotech 29 mm O-Ring Locations



## Securing your microSD card (v3)

- 1. Attach electrical tape on the underside of your data logger.
- 2. Insert the microSD card part way.
- 3. Wrap the tape around the card to fully insert it.
- 4. Secure the tape on top of the card holder.



## Questions for you

- Itimeter?
  Itimeter
- It is the second sec

## Your Questions?

- Data Logger?
  PC Board layout?
- \$50 Budget?
- Calibration?