Op Amps and Signal Conditioning

E80 Spring 2015 Erik Spjut

Non-inverting input Non-inverting input Inverting and non-inverting inputs are often flipped in the schematic. Be sure you check.

Simulink Op Amp Model For the curious. Not needed for E80

- Rate limited integrator followed by a range limit block.
- Ask Prof. Spjut if you ever need it.

Simplified Real Op Amp Model Not needed for ESC

- The internally generated voltage is the gain times the difference of the input voltages.
 The input impedance is very large.

- The input impedance is very large. The output impedance is very small. The ideal op amp is derived by assuming the gain approaches ∞ , the output impedance approaches 0, and the input impedance approaches ∞ .

Ideal Op Amp Model

- Input impedance: $\infty\Omega$
- Output impedance: 0Ω
- With negative feedback, gain so high that $V_+ = V_-$

Operational **Amp**lifier

- Can be configured to perform mathematical operations on a signal.
 Multiply by a constant (change gain)

 - Change sign
 - Add two or more signals
 - Subtract one signal from another
 - Integrate a signal
 - Differentiate a signal
 - Many others

Unity Gain Buffer

- Your go-to circuit. It solves many problems.
- · Analyze circuit.
- · Draws no current at input (ideal model).
- Provides needed current at output (ideal
- · Transfers voltage with no circuit loading.

Non-Inverting

$$V_{out} = \left(1 + \frac{R_f}{R_i}\right)V_i$$

- Gains≥1
- Do you see the voltage divider?
- Analyze circuit.

Inverting

$$V_{out} = -\frac{R_f}{R_l} V_{in}$$

- Input impedance is ${\cal R}_1$ (ideal model).
- Flips sign (or phase) of input.
- Full gain range
- · Analyze circuit.

Inverting Summing Amp

$$V_{out} = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$$

- How would you sum three signals?
- How would you average three signals?

 What is the
- What is the input impedance?
- · Analyze circuit.
- Non-inverting summer exists.

General Impedance Model

$$V_{out} = -\frac{Z_{_1}}{Z_{_2}}V_{_{in}}$$

- · Analyze circuit.
- Do you see the voltage divider?
- What is the input impedance?

12

Integrator

$$V_{out} = -\frac{Z_{1}}{Z_{2}}V_{in} = -\frac{1}{j\omega C_{1}}V_{in} = -\frac{1}{jR_{1}C_{1}\omega}V_{in}$$

- What is the time-domain version?
- How do you set initial condition?
- How do you reset?

14

Differentiator

$$V_{out} = -\frac{Z_1}{Z_2}V_{in} = -\frac{R_1}{1/\sqrt{i\omega C_i}}V_{in} = -\left(jR_1C_1\omega\right)V_{in}$$

Filters – LP, HP

$$\frac{V_{out}}{V_{in}} = H(j\omega) = -\frac{\Lambda_1/\Lambda_2}{1 + j\omega R_1 C_1}$$
c1
c1
c1
c1
c2
von
von
von
von

$$\frac{V_{out}}{V_{in}} = H(j\omega) = -\frac{j\omega R_1 C_2}{1 + j\omega R_2 C_2}$$

Filters – BP

$$H(j\omega) = \frac{-j\omega R_2 C_1}{\left(1 + j\omega R_1 C_1\right) \left(1 + j\omega R_2 C_2\right)}$$

A Step Up – Sallen & Key

$$\frac{V_{out}}{V_{in}} = \frac{Z_{3}Z_{4}}{Z_{1}Z_{2} + Z_{3}(Z_{1} + Z_{2}) + Z_{3}Z_{3}}$$

18

Difference Amplifier

$$\begin{split} V_{out} = & \left(\frac{R_1}{R_3 + R_4}\right) \left(\frac{R_1 + R_2}{R_1}\right) V_2 - \left(\frac{R_2}{R_1}\right) V_1 \end{split} \\ \text{If } R_3 = R_1 \text{ and } R_4 = R_2 \text{ then } V_{out} = \frac{R_2}{R_1} \left(V_2 - V_1\right) \underbrace{\frac{1}{2}}_{\text{violation}} \underbrace{\frac{k_2}{V_2 - V_1}}_{\text{violation}} \underbrace{\frac{k_2}{V_2 - V_2}}_{\text{violation}} \underbrace{\frac{k_2}{V_2$$

19

Instrumentation Amplifier

$$V_{out} - V_{ref} = \left(1 + \frac{2R_1}{R_{gain}}\right) \frac{R_3}{R_2} \left(V_{non-inv} - V_{inv}\right) \label{eq:vout}$$

- gain) H₂
- Set gain with R_{gain}.
- V_{ref} must be a low-impedance source.
- Never make one. Use a commercial one.

20

Transimpedance Amp

$$V = iR$$

- If V_{out} has the wrong sign, flip the diode.
- The far side of the photodiode can be tied to V_{bias} instead of ground.

21

Logarithmic Amp

$$V_{out} = -V_T \ln \left(\frac{V_{in}}{i_c R_1} \right)$$

$$\begin{split} V_T & \text{ and } i_s \text{ are diode properties.} \\ & \bullet \quad \text{Thermal voltage} \\ & \bullet \quad \text{Saturation current} \end{split}$$

Exponential Amp

$$V_{out} = -R_1 i_s \exp \left(\frac{V_{in}}{V_x} \right)$$

$$\begin{split} V_{T} \text{ and } i_{s} \text{ are diode properties.} \\ \bullet \quad \text{Thermal voltage} \end{split}$$

- Saturation current

What Does It Do?

- $\bullet \ \ \mbox{What does the first voltage divider do?}$
- Can you find the unity gain buffer?
- Where is the instrumentation amp?
- Can you find the modified difference amp?
- What are G and K?
- Don't use a circuit you don't understand.

LahV	JIEW	File	Na	ming	Con	ventior	١.
Laur	/ ILL VV	rme	INA.	mme	COH	iventior	1.

Your file name should be (Last Name)_(First Initial)_A(Assignment Number)_S(Section Number). (vi or llb). For example, if I were Greg Lake in Section 4 and I was turning in Assignment 3, my file would be named Lake_G_A3_S4.llb. If your file does not have the correct naming convention, it will not be graded.

Professors have asked that you submit lab reports as PDF files. There are too many Mac/Win formatting battles to submit Word files.