

Lecture 9 Inertial Measurement



Feb. 19, 2013 Christopher M. Clark

http://www.volker-doormann.org/physics.htm

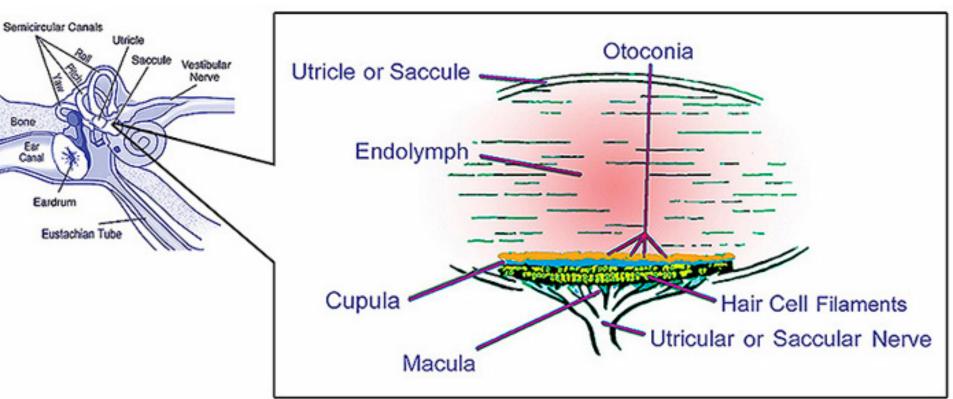
Where is the rocket?

<u>Outline</u>

- Sensors
 - People
 - Accelerometers
 - Gyroscopes
- Representations
- State Prediction
- Example Systems
- Bounding with KF

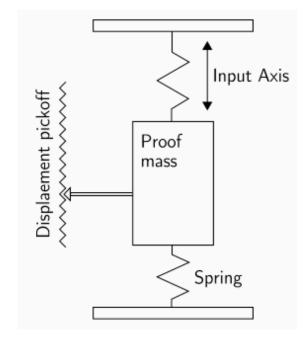
People

http://en.wikipedia.org/wiki/File:Bigotolith.jpg

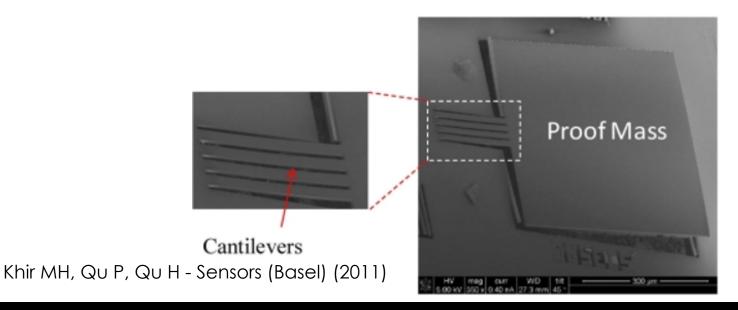


Accelerometers

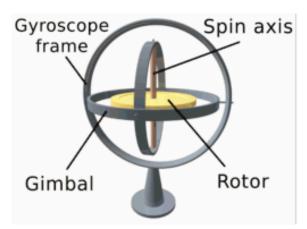
$$a = k x / m$$



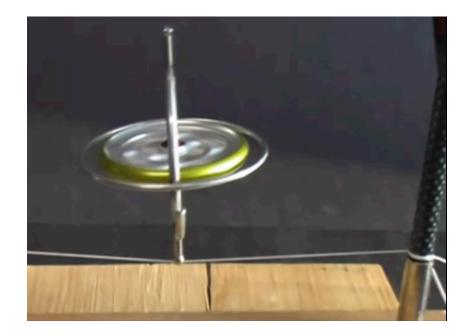
- Accelerometers
 - The accelerometers are typically MEMS based
 - They are small cantilever beams (~100 μm)



- Gyroscopes (original)
 - Mounted on two nested gimbals, the spinning wheel of the gyroscope is free to take any orientation.

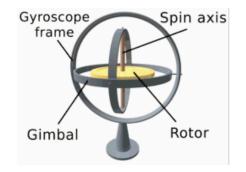


High spin rate leads to high angular momentum

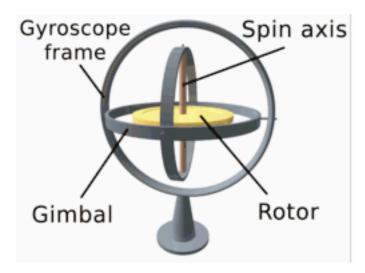


http://www.youtube.com/watch?v=cquvA_lpEsA

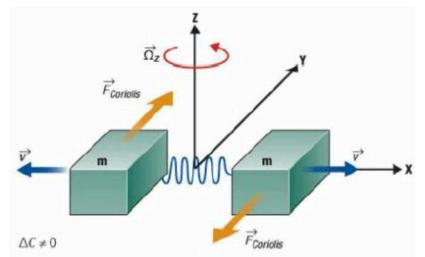
- Gyroscopes (original)
 - The gyroscope resists any change of orientation caused by external torques, due to the principle of conservation of angular momentum.
 - The orientation of the gyroscope remains nearly fixed, regardless of any motion of the platform.



- Gyroscopes (original)
 - Gyroscope orientation can be obtained by measuring the angles between adjacent gimbals.



- MEMS (Microelectromechanical Systems) Gyroscopes
 - Two masses oscillate back and forth from the center of rotation with velocity v.
 - □ A rotation will cause a Coriolis force in this coordinate frame.

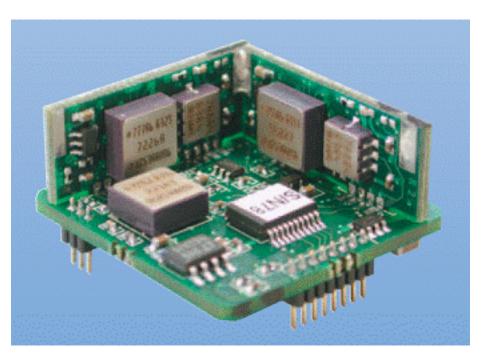


- MEMS Gyroscopes
 - \square Their deflection *y* is measured, to establish a force

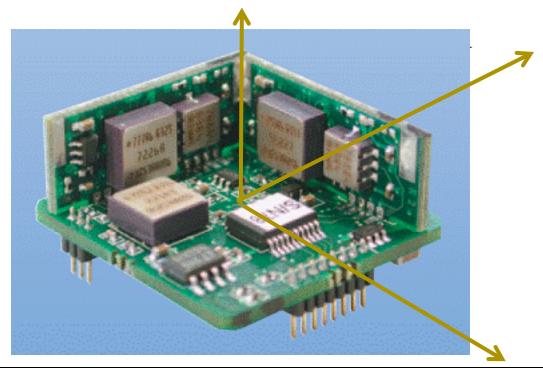
$$F_{Coriolis} = ky$$

• The acceleration is obtained since the mass is known $-2m |\mathbf{\Omega} \times \mathbf{v}| = F_{Coriolis}$

- Inertial Measurement Units
 - a 3 Accelerometers
 - 3 Gyroscopes
 - a 3 Magnetometers(?)



Inertial Measurement Units

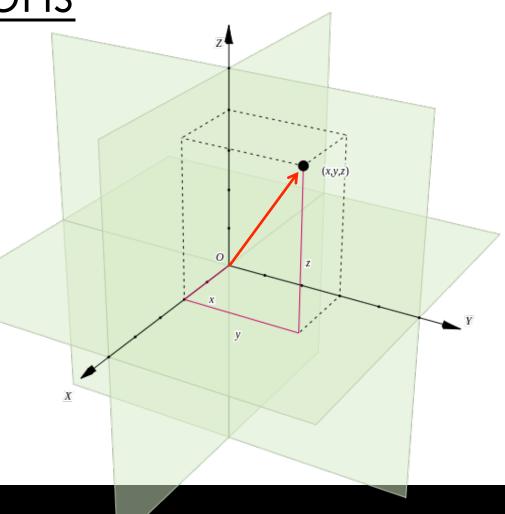


<u>Outline</u>

- Sensors
- Representations
 - Cartesian Coordinate Frames
 - Transformations
- State Prediction
- Example Systems
- Bounding with KF

- Cartesian
 Coordinate Frames
 - We can represent the 3D position of a vehicle with the vector

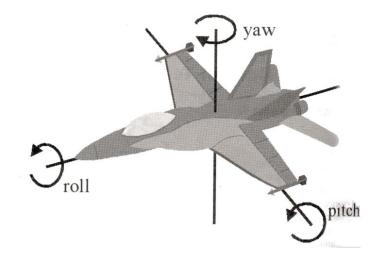
 $\mathbf{r} = [x y z]$



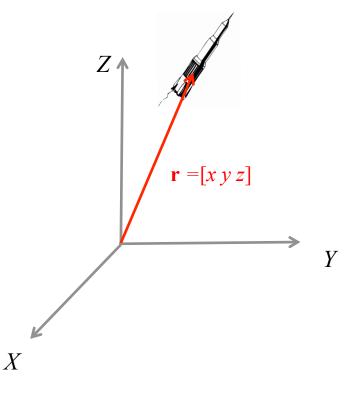
- Euler Angles
 - We can represent the 3D orientation of a vehicle with the vector

$$\boldsymbol{\phi} = [\alpha \beta \gamma]$$

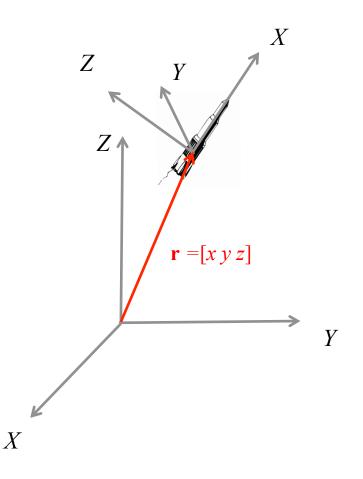
Roll - α Pitch - β Yaw - γ



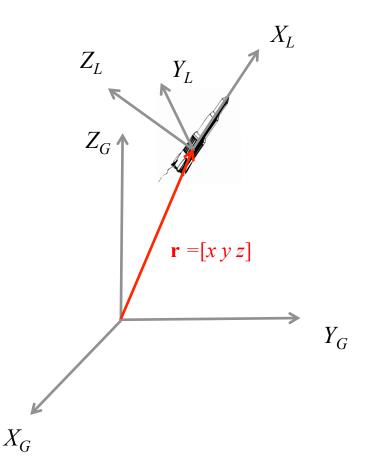
- Where do we place the origin?
 - We can fix the origin at a specific location on earth, e.g. a rocket's launch pad.
 - This is called the **global** or inertial coordinate frame



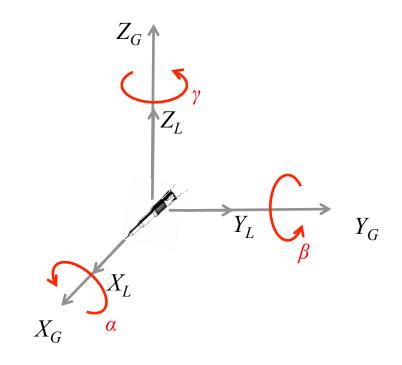
- Where do we place the origin?
 - We can ALSO fix the origin on a vehicle.
 - This is called the **local** coordinate frame



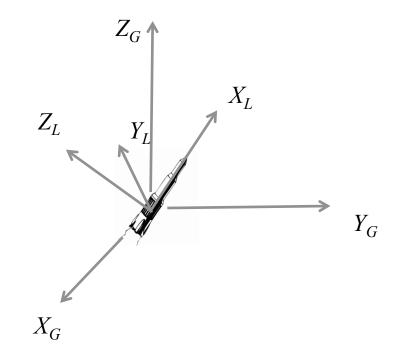
- Where do we place the origin?
 - We must differentiate between these two frames.
 - What is the real difference between these two frames?
 - A Transformation consisting of a rotation and translation



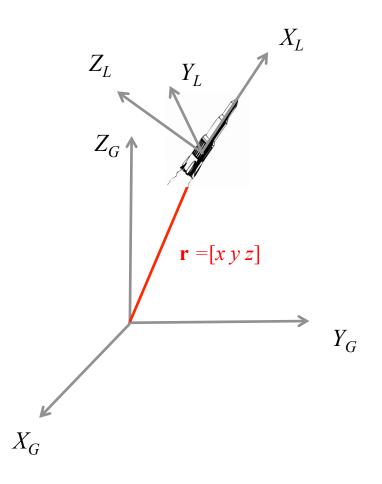
- Transformations
 - The rotation can be about 3 axes (i.e. the roll, pitch, yaw)



- Transformations
 - The rotation can be about 3 axes (i.e. the roll, pitch, yaw)



- Transformations
 - The translation can be in three directions



- Rotations
 - In 2D, it is easy to determine the effects of rotation on a vector

$$\mathbf{q}_2 = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \mathbf{q}_1$$

$$\mathbf{q}_2$$
 \mathbf{q}_1 X

V

$$= \mathbf{R}(\alpha) \mathbf{q}_{l}$$

- Rotations
 - In 3D, we can use similar rotation matrices

$$\mathbf{q}_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} \mathbf{q}_{1} \qquad \mathbf{q}_{2} \qquad \mathbf{q}_{1} \qquad \mathbf{y}_{G}$$
$$= \mathbf{R}_{\mathbf{x}}(\alpha) \mathbf{q}_{1} \qquad \qquad X_{G}$$

 Z_G

$$\mathbf{R}_{\mathbf{x}}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
$$\mathbf{R}_{\mathbf{y}}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{pmatrix}$$
$$\mathbf{R}_{\mathbf{z}}(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Rotations

□ For 3 rotations, we can write a general Rotation Matrix

$$\mathbf{R}(\alpha, \beta, \gamma) = \mathbf{R}_{\mathbf{x}}(\alpha) \ \mathbf{R}_{\mathbf{x}}(\beta) \ \mathbf{R}_{\mathbf{x}}(\gamma)$$

 Hence, we can rotate any vector with the general Rotation Matrix

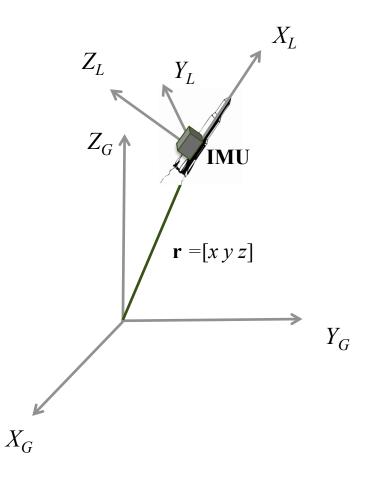
$$\mathbf{q}_2 = \mathbf{R}(\alpha, \beta, \gamma) \mathbf{q}_1$$

<u>Outline</u>

- Sensors
- Representations
- State Prediction
 Updating R(t)
 Updating r(t)
- Example Systems
- Bounding Errors with KF

State Prediction

- Strapdown Inertial Navigation
 - Our IMU is fixed to the local frame
 - We care about the state of the vehicle in the **global** frame



Updating $\mathbf{R}(t)$

Given: $\omega_L(t) = [\omega_{x,L}(t) \omega_{y,L}(t) \omega_{z,L}(t)]$

Find: $\mathbf{R}(t)$

• Lets define the rotational velocity matrix based on our gyroscope measurements $\omega_L = [\omega_{x,L}(t) \ \omega_{y,L}(t) \ \omega_{z,L}(t)]$

$$\Omega(t) = \begin{pmatrix} 0 & -\omega_z(t) & \omega_y(t) \\ \omega_z(t) & 0 & -\omega_x(t) \\ -\omega_y(t) & \omega_x(t) & 0 \end{pmatrix}$$

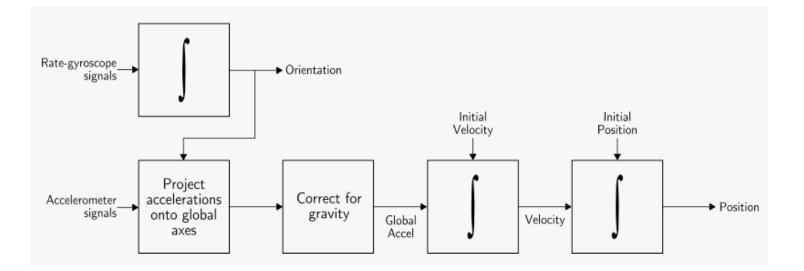
• It can be shown that the vehicle rotating with velocity $\Omega(t)$ for δt seconds will (approximately) yield the resulting rotation Matrix $\mathbf{R}(t+\delta t)$:

$$\mathbf{R}(t+\delta t) = \mathbf{R}(t) [\mathbf{I} + \mathbf{\Omega}(t)\delta t]$$

Given:
$$a_{L} = [a_{x,L} a_{y,L} a_{z,L}]$$

R(*t*)

Find:
$$\mathbf{r}_{G} = [a_{x,L} a_{y,L} a_{z,L}]$$



• First, convert to global reference frame

 $\mathbf{a}_{\boldsymbol{G}}(t) = \mathbf{R}(t) \ \mathbf{a}_{\boldsymbol{L}}(t)$

- Second, remove gravity term $\mathbf{a}_{G}(t) = [a_{x,G}(t) \ a_{y,G}(t) \ a_{z,G}(t)-g]$

Third, integrate to obtain velocity

$$\mathbf{v}_{\boldsymbol{G}}(t) = \mathbf{v}_{\boldsymbol{G}}(0) + \int_{0}^{t} \mathbf{a}_{\boldsymbol{G}}(\tau) d\tau$$

• Fourth, integrate to obtain position

$$\mathbf{r}_{\boldsymbol{G}}(t) = \mathbf{r}_{\boldsymbol{G}}(0) + \int_{0}^{t} \mathbf{v}_{\boldsymbol{G}}(\tau) d\tau$$

Updating r(t)

Third, integrate to obtain (approximate) velocity

$$\mathbf{v}_{\mathbf{G}}(t+\delta t) = \mathbf{v}_{\mathbf{G}}(t) + \mathbf{a}_{\mathbf{G}}(t+\delta t) \,\delta t$$

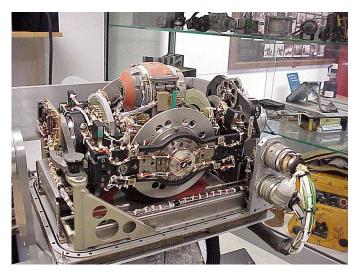
Fourth, integrate to obtain (approximate) position

$$\mathbf{r}_{\mathbf{G}}(t+\delta t) = \mathbf{r}_{\mathbf{G}}(t) + \mathbf{v}_{\mathbf{G}}(t+\delta t) \,\delta t$$

<u>Outline</u>

- Sensors
- Representations
- State Prediction
- Example Systems
 - □ LN-3
 - The Jaguar
- Bounding Errors with KF

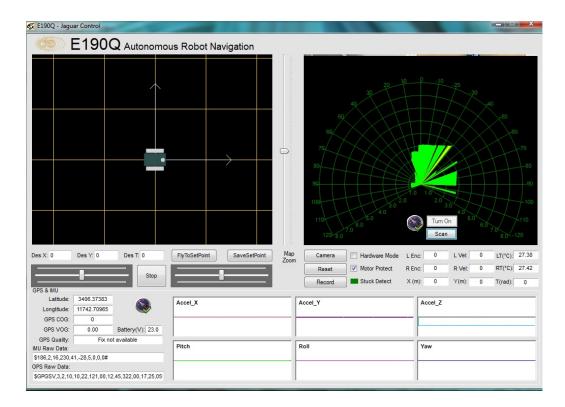
- LN-3 Inertial Navigation System
 - Developed in 1960's
 - Used gyros to help steady the platform
 - Accelerometers on the platform were used to obtain accelerations in global coordinate frame
 - Accelerations (double) integrated to obtain position



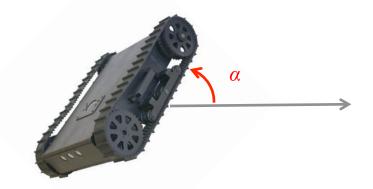
<u>http://www.youtube.com/watch?feature=player_embedded&v=ePbr_4yMehs</u>

- The Jaguar Lite
 - Equipped with an IMU, camera, laser scanner, encoders, GPS

- The Jaguar Lite
 - GUI provides acceleration measurements



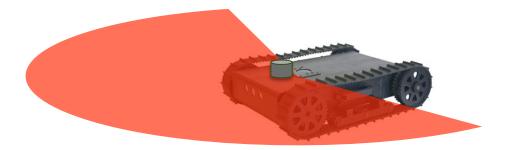
- Question:
 - Can we use the accelerometers alone to measure orientation?



<u>Outline</u>

- Sensors
- Representations
- State Prediction
- Example Systems
- Bounding Errors with KF
 - Exteroceptive Sensing
 - Fusing measurements

- Exteroceptive sensors
 - Drift in inertial navigation is a problem
 - We often use exteroceptive sensors which measure outside the robot – to bound our errors
 - Examples include vision systems, GPS, range finders



- Exteroceptive sensors
 - We can fuse measurements, e.g. integrated accelerometer measurements and range measurements, by averaging.
 - □ For example, consider the 1D position estimate of the jaguar.

$$x = 0.5 (x_{IMU} + (x_{wall} - x_{laser}))$$

 x_{IMU} is the double integrated IMU measurement x_{wall} is the distance from the origin to the wall x_{laser} is the central range measurement

- Exteroceptive sensors
 - Lets weight the average, where weights reflect measurement confidence

$$x = \frac{w_{IMU}x_{IMU} + w_{laser}(x_{wall} - x_{laser})}{w_{IMU} + w_{laser}}$$

Exteroceptive sensors
 This leads us to a 1D Kalman Filter

$$x_t = x_{IMU,t} + K_t [(x_{wall} - x_{laser,t}) - x_{IMU,t}]$$

$$K_{t} = \frac{\sigma_{IMU}^{2}}{\sigma_{IMU}^{2} + \sigma_{laser}^{2}}$$

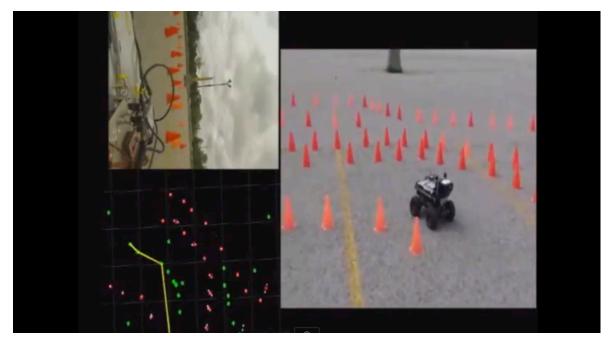
$$\sigma_x^2 = (1 - K_t) \, \sigma_{IMU}^2$$

IMU

- Higher sampling rate
- Small errors between time steps (maybe centimeters)
- Uncertainty increases
- Large build up over time (unbounded)

GPS

- Lower sampling rate
- Larger errors(maybe meters)
- Uncertainty decreases
- No build up (bounded)



http://www.youtube.com/watch?v=I_cCeGm4x4c