

Engineering 80 – Spring 2016 Flight Hardware

A "ONE-PAGER"...

• Problem Statement (or Purpose, or Goal)

• The final E80 project needs to be completed to pass the course

• Success Criteria (envision successfully crossing the finish line)

• Submit a final report and give a presentation about your E80 rocket flights (e.g. results of the flight, comparison of data with modeling)

• Strategies (how are you going to get to that finish line?)

• Work as a team to meet all weekly project deliverables

• Timeline (detailed plan for implementing the strategies)

	TASK	<u>Start</u>	<u>End</u>	<u>Status</u>
	Meet Week 1 Deliverables (Propose & Design)	3/10/2016	3/23/2016	In Progress
	Meet Week 2 Deliverables (Breadboard & Test)	3/24/2016	3/30/2016	Not Started
Sample	Meet Week 3 Deliverables (PC Board & Test)	3/31/2016	4/6/2016	Not Started
imeline for	Meet Week 4 Deliverables (Build, Test, & Launch)	4/7/2016	4/16/2016	Not Started
Section 2	Meet Week 5 Deliverables (Rebuild, Retest, & Relaunch)	4/14/2016	4/23/2016	Not Started
	Meet Week 6 Deliverables (Prepare Report & Presentation)	4/21/2016	5/4/2016	Not Started
	Submit Report and Give Final Presentation	5/4/2016	5/4/2016	Not Started

Today We Will Discuss...

- •E80 Rocket Requirements
- Surviving Launch and Recovery
- Rocket Construction
- Deliverables

E80 Engineering Rocket Requirements

- Payload Dimensions
- •Sensor Requirements
- •Speed of Response
- Power Requirements
- Acceleration, Shock, and Vibration
- •Temperature Profile
- Construction Standards

- You will be assigned an...
 - Aerotech Arreaux <<u>.rkt</u>> <<u>.ork</u>> <<u>.zip</u>>
 - Payload Section ID: 1.80 inches
 - Payload Section Length: **12.00 inches**

- You will be assigned an...
 - Aerotech Arreaux <<u>.rkt</u>> <<u>.ork</u>> <<u>.zip</u>>
 - Payload Section ID: 1.80 inches
 - Payload Section Length: **12.00 inches**

Your Precious Payload – The PC Board

- Top laid out like your protoboard
 - 4 exterior buses slightly closer
 - 1 extra power bus
- Bottom has connectors for a data logger
- 4 Holes for mounting
- 2 holes for mounting battery holder

If it works on your protoboard, then it will work on the PC Board Chip for Chip Wire for Wire

Payload Sections

- PC board matches Aerotech body tubing diameter
- Arreaux payload section too short
- An Aerotech body tube that fits the PC board will be provided

Data Logging

•How do you acquire and log data in the rocket?

Your Precious Payload – The PC Board

- Center has place for 5 V regulator + three more
- Regulators can tie common to ground or not
- Bottom has connectors for data logger

Your Precious Payload – The Data Logger

- Created and programmed by Tyler Smelt
- 16 channels (Can measure up to 16 sensors)
- 16-bit resolution
- Max 400 kSPS composite rate (25 kSPS/chan)
- Max 200 kSPS on single channel (read in pairs)
- Power with 6 V to 20 V (9 V recommended)
- Uses microSD for storage (have 16 GB cards)
 - Need to tape/secure the SD card in the reader!
- Input range 0 to 3.3 V
- Input Impedance $\approx 2.2 k\Omega$ (MyDAQ is 10 GΩ)
 - Low impedance, may need to buffer your input signals
- Set parameters with Config File (Initialize on PC)
- Have VI and .m file to read binary data files
- PIC-32 microcontroller; Two AD7689 A/D Chips

Single–Sided Circuits

- Data logger expects 0 V to 3.3 V signals
- Classical op-amp circuit power ±15 V
- Low-voltage op-amp circuit power
 - ±1.4 V to ±3 V
 - 0-to-2.8 V to 0-to-6 V
- Signal offset
 - Normal signal that goes above and below zero will need DC offset
- Reference offset
- Virtual ground
 - This is where we want all signals referenced
 - WHAT IS A VIRTUAL GROUND?

Inverting Amps LOW POWER OP-AMP

LOW POWER OP-AMP

Inverting Amps

If you are powering your circuit by battery and you have a single

sided supply, you need to think of creating a virtual ground halfway Rf between your low and high on your op amp; then offset your signal so that you have your average value in the middle instead of zero +2.5V 0.1 µF Rin Vin out MCP601 A out 0.1 µF -2.5V Data logger needs 0 to 3.3 V; **Virtual Ground** High side of battery You could go from 0 to 3.3 V with 1.8 V as center Rf This offsets the op-amp so that the signal is centered +5V $\frac{R_{f}}{R_{.}} V_{in} + 2.5 \left(1 + \frac{R_{f}}{R_{.}}\right)$ between 0 and 5 V 0.1 µF Rin out Vin Vout MCP601_A +2.5V Low side of battery

Non-Inverting Amps

Scientific vs. Engineering Measurements

Engineering Measurements "What you measure about a rocket."

Scientific Measurements "What you measure with a rocket."

Sensor Requirement

- You are required to have a **MINIMUM of 2** types of sensors
 - One thermocouple and one thermistor would count
 - Two thermocouples would **<u>NOT</u>** count *****

Sensor Requirement

- You are required to have a **MINIMUM of 2** types of sensors
 - One thermocouple and one thermistor would count
 - Two thermocouples would **<u>NOT</u>** count *****

SOURCE: http://www.eng.hmc.edu/NewE80/LargePhotos/KC20120421_IMG_1658.jpg **Flight Hardware**

Speed of Sensor Response

- We recommend using...
 - At least one sensor with a time constant faster than 1 ms
 - Bandwidth \geq 1 kHz
 - Sensor adequate: $\tau_S < 0.1 \tau_P$ • The bandwidth of the sensor is 10 times higher than the phenomenon that you want to measure
 - Sensor needs deconvolution: $0.1\tau_P < \tau_S < 10\tau_P$
 - \bullet Sensor is "Hopeless": $\tau_{_S}\!>\!10\tau_{_P}$

Effect of Temperature Sensor Time Constant

Temperature Measurement Devices in Lab

	Thermocouple -270 to 1800°C		
Temperature Range			
Sensitivity	10s of µV / °C		
Accuracy	±0.5°C		
Linearity	Requires at least a 4th order polynomial or equivalent look up table.		
Ruggedness	The larger gage wires of the thermocouple make this sensor more rugged. Additionally, the insulation materi- als that are used enhance the thermo- couple's sturdiness.		
Responsiveness in stirred oil	less than 1 Sec		
Excitation	None Required		
Form of Output	Voltage		
Typical Size	Bead diameter = 5 x wire diameter		
Price	\$1 to \$50		

Thermistor	Integrated Silicon		
-100 to 450°C	-55 to 150°C		
several Ω / Ω / °C	Based on technology that is -2mV/°C sensitive		
±0.1°C	±1°C		
Requires at least 3rd order polynomial or equivalent look up table.	At best within ±1°C. No linearization required.		
The thermistor element is housed in a variety of ways, however, the most stable, hermetic Ther- mistors are enclosed in glass. Generally ther- mistors are more difficult to handle, but not affected by shock or vibration.	As rugged as any IC housed in a plastic pack- age such as dual-in-line or surface outline ICs.		
1 to 5 Secs	4 to 60 Secs		
Voltage Source	Typically Supply Voltage		
Resistance	Voltage, Current, or Digital		
0.1 x 0.1 in.	From TO-18 Transistors to Plastic DIP		
>\$10	\$1 to \$10		

HARVEY MUDD College

Effect of Temperature Sensor Time Constant

PML Phobos on H123W-M

Effect of Temp. Sensor Time Constant

At standard lapse rate $\Delta T = -7.8^{\circ}C @ 1200 \text{ m AGL}$

• Temperature drops by 0.0065°C for every meter going up

Effect of Temperature Sensor Time Constant

Alt (m)

Flight Hardware

Sensor Requirement

- You are required to have a **MINIMUM** of 2 types of sensors
 - One thermocouple and one thermistor would count
 - Two thermocouples would <u>NOT</u> count <u></u>
- WHAT OTHER TYPES OF SENSORS COULD WE USE?
 - Pressure Altimeter
 - Pitot-Static Tube
 - Accelerometer/Rate Gyroscope
 - Gas/Humidity Sensor; Vibration Sensor; Light Sensor

Sensor Requirements

- Air Temperature Sensor
 - Sensor in the free stream
- Pressure Altimeter
 - No flow; 3 or 4 symmetric pressure taps
- Accelerometer/Rate Gyroscope
 - Known fixed orientation
 - Means to deal with baseline and drift
- Pitot-Static Tube
 - Pitot tube in free stream and direction of motion
 - Static Tap should be normal to the flow
 - Preferable 4+ "calibers" (rocket tube diameters) from the nose cone
 - Multiple in symmetric pattern is best

Your Team has a Budget of \$50

SOURCE: http://web.stanford.edu/class/me220/data/lectures/lect05/static_probe.gif

SOURCE: http://www.ipscustom.com/ProdImages/Wire

Sensor Requirements

- Light Sensor
 - Proper orientation and view field
- Vibration Sensor
 - Best on anti-node; avoid node
 - Nor for DC strain
- Gas Humidity Sensor
 - Gas flow to sensor is desired
- Particle/Dust Sensor
 - Gas flow through sensor
 - If optical, reduce or eliminate background light
 - Often needs pulse train

SOURCE: http://www.digikey.com/product-search/en?vendor=0&keywords=605-00004-ND

SOURCE: http://www.digikey.com/product-detail/en/HIH-5030-001/480-3294-1-ND/2061078

SOURCE: http://www.digikey.com/productdetail/en/GP2Y1010AU0F/425-2068-ND/720164

Sensor Placement

- Sensors need to be placed in locations where a measurement is desired
- Easiest in Payload Section
- Next easiest in Nosecone
- Ports/Channels to rout to exterior
- Don't forget separation for recovery
 - Can run (very long) wires through shock cord
 - Can make connector that separates at recovery
 - Can have separate sections

What Does a Rocket with Sensors Look Like?

SOURCE: http://www.eng.hmc.edu/NewE80/LargePhotos/20140419_E80-FirstLaunch_SMM_341.jpg

Video Camera

- Battery charged by USB
- 40 minute battery time on full charge
- Creates 720P .mov file on microSD
- 10 minutes per 1 GB
 - On 16 GB card will run out of battery before storage
- Physical Mounting
 - Method
 - Duct tape? Electrical tape?
 - Location
 - Center of pressure?
 - Field of View

Power Requirements

- Power Inputs
 - Data Logger: 6 V to 20 V
 - IMU: 5 V (regulated) & 3 V to 3.3 V (regulated)
 - AD623AN: 3 V to 12 V or ±1.5 V to ±6 V
 - MPC 60XX: 2.7 V to 6 V
 - Other sensors TBD
- Must measure current draw of final circuit
- Batteries must power for 1 hour minimum

Battery capacity (in mAh) / Average current consumption (in mA) = Hours of expected runtime

• Turn on before launch, stay on during flight, turn off after recovery.

Power Sources

- Power sources
 - 9 V lithium, 750 mAh
 - 1.5 V
 - AAA Alkaline, 1000 mAh; Lithium, 1200 mAh
 - AA Alkaline, 2700 mAh; Lithium, 3000 mAh
 - 12 V (NEDEA- 1811A), 55 mAh
 - LiPo (Rechargable, High Power Density, Special Charger, HazMat)
 - 3.7 V, up to 5000 mAh
 - 7.4 V, up to 5000 mAh
 - 11.1 V, up to 5000 mAh
 - NiMH (Rechargable)
 - NiCd (Rechargable)

• Your team will decide on which power source to use

Your Team has a Budget of \$50

Surviving

• What does your rocket have to survive during launch?

BE THE ROCKET

Temperature

1) Temperature at Launch

- Often –2°C at 6 AM
- Solar heating of payload section to 50°C+
- At standard lapse rate $\Delta T = -7.8^{\circ}C @ 1200 \text{ m AGL}$
 - Temperature drops by 0.0065°C for every meter going up

<u>Standards for Parts</u> Commercial Grade: 0°C to 70°C Industrial Grade: –40°C to 85°C

Military Grade: -55°C to 125°C

HARVEY MUDD College

Acceleration

2) Acceleration

- From motor, 6g to (50+)g
- Use RockSim or OpenRocket to estimate

Flight Hardware

HARVEY MUDD College

Vibration

3) Vibration (What causes vibration?)

- From motor
- From aerodynamics
- From shock impulse

Amplified at resonant frequencies Use viscoelastic damping materials

Shock

- 4) Shock (What causes shock?)
 - Deployment charge, 2 g to 20+ g
 - From parachute, 1 g to 50+ g
 - From ballistic landing, 200+ g

Surviving

• What does your rocket have to survive during launch?

- 1. Temperature
- 2. Acceleration
- 3. Vibration
- 4. Shock

Constructing Your Rocket

- NAR or TRA safety Code is mandatory.
- <u>Materials</u>: I will use only lightweight materials such as paper, wood, rubber, plastic, fiberglass, or when necessary ductile metal, for the construction of my rocket.
- <u>Motors</u>: I will use only certified, commercially made rocket motors, and will not tamper with these motors or use them for any purposes except those recommended by the manufacturer. I will not allow smoking, open flames, nor heat sources within 25 feet of these motors.

Constructing Your Rocket

- Adhesives must be used under fume hood, in spray-paint booth, or outdoors.
- Neoprene gloves required. Eye protection required
- G10 Fiberglass (PML fins) must be wet sanded or with full respiratory protection. Neoprene gloves strongly recommended.
- No sharp implements permitted when removing plastic rivets.
- Spray painting only permitted in paint booth or outdoors (not by Libra Complex). Skin & eye protection required.
- If you follow the <u>unmodified</u> instructions for the rockets, you will <u>NOT</u> be able to fly them.
 - Aerotech requires motor retainer, longer motor mount, modified placement, and removal of motor hook, thrust ring, and thrust ring flange

Rocket Construction

- Motor retainers attached with JB Weld ONLY!
- Cyanoacrylic/Super-Glue (Aerotech)
 - Make SURE you have adequate ventilation
 - ALWAYS use skin protection (neoprene gloves)
 - Usually sets in 30 s to 20 min
 - Can use accelerator (we have limited supplies)
 - Accelerator on one surface + Super-Glue on other surface = instant bond when joined.
 - Will have to dribble on some internal joints
- Epoxy clay
 - Not quite as strong as epoxy
 - Very useful for fillets and custom mounts
 - You always need less than you think

Rocket Hints

- For Aerotech kits...
 - There is no need for the 24 mm motor adaptor.
 - Make sure the fins snap easily into the Fink Locks BEFORE putting the Motor Tube Assembly into the Body Tube.
 - It's very difficult to reconnect the shock cord to the nose cone. An extension from the screw eye to the end of the coupler makes the process much easier.

Deliverables

- Week 1
 - Scientific and/or Engineering objectives
 - Select sensors (min: 2, MAX: 16)
 - Parts list (especially to order)
 - Complete schematic
 - Show all calculations; bypass capacitors; power
 - Check off by Section Prof & Prof Spjut
- Week 2
 - Complete protoboard
 - Measured current draw
 - Demonstrate functionality
 - Check off by Section Prof & Prof Spjut

NO RESTRICTIONS ON WHEN YOU DO YOUR WORK.

- However, priority for resources goes to groups that were assigned to that lab section.
- Need to show up to your lab section for the check-off.

Deliverables

- Week 3
 - Fully populated PC board
 - Demonstrate functionality
 - Data acquisition works and is demonstrated
 - Check off by Section Prof & Prof Spjut
- Week 4
 - Completed Rocket
 - Complete ground and analysis procedures
 - Completed launch checklist (you have to DO steps)
 - Loaded launch motors

NO RESTRICTIONS ON WHEN YOU DO YOUR WORK.

- However, priority for resources goes to groups that were assigned to that lab section.
- Need to show up to your lab section for the check-off.

Deliverables

• Week 5

- List lessons learned
- Fix & correct things
- Load launch motors
- Week 6
 - Analyze data
 - Write Final Report
 - Prepare Final Presentation

NO RESTRICTIONS ON WHEN YOU DO YOUR WORK.

- However, priority for resources goes to groups that were assigned to that lab section.
- Need to show up to your lab section for the check-off.

The Final Project on One Page...

• Problem Statement (or Purpose, or Goal)

• The final E80 project needs to be completed to pass the course

• Success Criteria (envision successfully crossing the finish line)

• Submit a final report and give a presentation about your E80 rocket flights (e.g. results of the flight, comparison of data with modeling)

• Strategies (how are you going to get to that finish line?)

• Work as a team to meet all weekly project deliverables

• Timeline (detailed plan for implementing the strategies)

	<u>TASK</u>	<u>Start</u>	<u>End</u>	<u>Status</u>
	Meet Week 1 Deliverables (Propose & Design)	3/10/2016	3/23/2016	In Progress
	Meet Week 2 Deliverables (Breadboard & Test)	3/24/2016	3/30/2016	Not Started
Sample	Meet Week 3 Deliverables (PC Board & Test)	3/31/2016	4/6/2016	Not Started
imeline for	Meet Week 4 Deliverables (Build, Test, & Launch)	4/7/2016	4/16/2016	Not Started
Section 2	Meet Week 5 Deliverables (Rebuild, Retest, & Relaunch)	4/14/2016	4/23/2016	Not Started
	Meet Week 6 Deliverables (Prepare Report & Presentation)	4/21/2016	5/4/2016	Not Started
	Submit Report and Give Final Presentation	5/4/2016	5/4/2016	Not Started

Visualize...

https://vimeo.com/126016928

Good Luck Over the Next 7 Weeks!

MAKE IT HAPPEN!