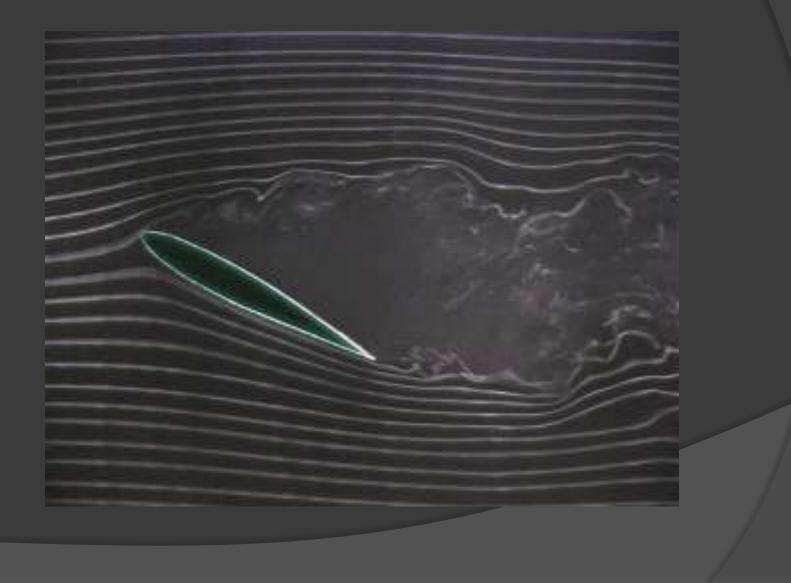
The Wind Tunnel FLUID MEASUREMENTS



Cayley's Whirling Arm

- Cayley did this in 1804, and built and flew unmanned glider with wing area of 200 sq. ft.
- What was Cayley trying to measure?
- Any issues with his whirling arm? Does it mimic what a real glider "sees", in terms of fluid flow?

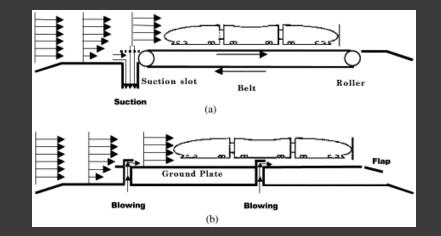
Airfoil in smoke tunnel

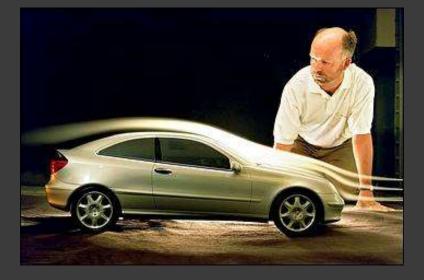
What about cars in tunnels?

http://stopbuyingrotas.files.wordpress.com/2008/10/voltex.jpg

Car testing

- What needs to be there to make it like a real car driving on a road?
- What kinds of things would you want to measure?
- Any comments about the tunnel itself?

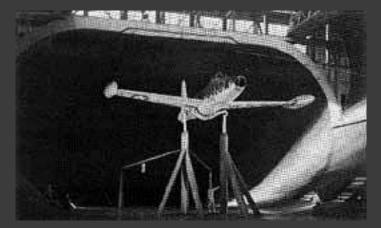

Rolling Road Wind Tunnel


http://www.wired.com/cars/coolwheels/magazine/15-10/pl motor

Other ways to match fluid flow between bottom of car and road

Less expensive to do scaled models

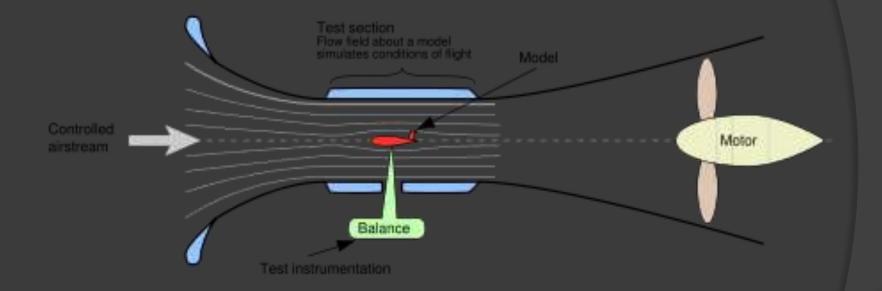
- What do we have to do in order to test scaled models?
 - Geometry scales
 - Paths of fluid particles look the same, velocity of fluid particles scales
 - Forces scale
- Called similarity (geometric, kinematic, dynamic)
 - More in a bit...


Mars Curiosity parachute

http://www.cleveland.com/science/index.ssf/2012/07/wind_tunnel_testing_at_clevela.html http://www.super-collider.com/styrofoam/wp-content/uploads/2012/08/parachute.jpg

Other examples

http://images.motorcycle-usa.com/PhotoGallerys/wind-tunnel-02.jpg http://history.nasa.gov/SP-440/ch4-3.htm


Wind Tunnel

- Ground-based experimental facility designed to produce flow of gases (often air) to simulate natural flows occurring around a vehicle or other object
- Commonly used for flight vehicles (airplanes, jets, rockets, space vehicles)
- Many different types of tunnels, depending on application (low-speed, supersonic, hypersonic, ice testing, spin testing)

Why do we need experimental data?

- Can't we just do computational fluid dynamics to solve for everything we need?
 - CFD doesn't work well for everything
 - Flow separation, some fluid-structures interactions
 - In the past, CFD took too long to run
 - For flight vehicles, it's a really good idea to get wind tunnel data before you actually fly
 - "Tunnel tests first, free-flight tests later, is the proper order of things." –NASA (from "Wind Tunnels of NASA")
 - "We validate the designs," Wendy Lacy, Boeing test engineer

Low-speed wind tunnel schematic

http://www.thefullwiki.org/Subsonic and transonic wind tunnel

HMC Wind Tunnel

Prof. Jenn Rossmann's tunnel 1' x 1' test section, 140 mph Note: open door to outside before operating!

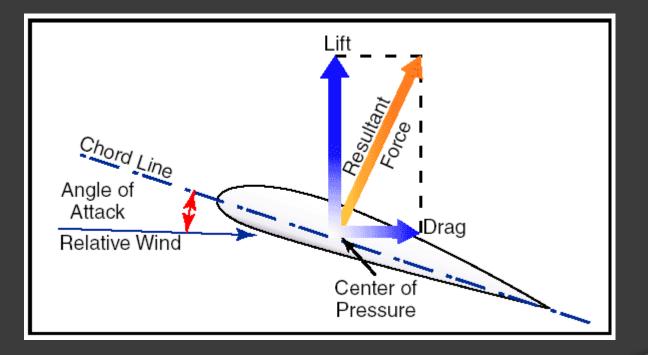
Low-speed wind tunnel

- M = Mach number = velocity/speed of sound
- For M < 0.3, density can be taken as constant (incompressible fluid)
- M=0.3 is about 230 mph at sea level
- At steady-state operation, assuming uniform velocity across cross-section, conservation of mass is:
- $\rho_1 A_1 V_1 = \rho_2 A_2 V_2 = \dot{m}$ (mass flow rate)

•
$$V_2 = \frac{A_1}{A_2} V_1$$

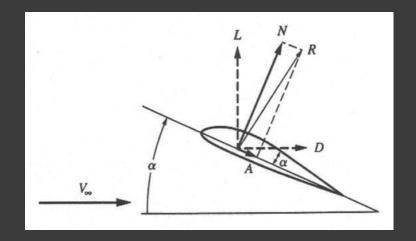
Bernoulli's Eqn

- $P_1 + \rho \frac{{V_1}^2}{2} = P_2 + \rho \frac{{V_2}^2}{2}$ = constant along a streamline
 - Assumed friction is negligible, gravity negligible, steady flow, incompressible fluid, flow is along a streamline
- We can derive this from conservation of momentum or conservation of energy

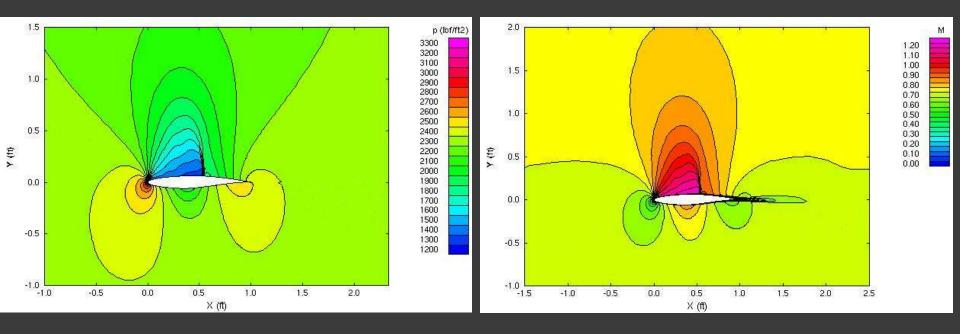

Operation of wind tunnel

 Although we need to be careful when using Bernoulli's eqn because of restrictive assumptions, we can use it to gain some insight

•
$$V_2 = \sqrt{\frac{2(P_1 - P_2)}{\rho(1 - (\frac{A_2}{A_1})^2)}}$$


 Area ratio of wind tunnel is known, so we vary the pressure difference to get our desired test section velocity

Forces: Lift and Drag


http://www.free-online-private-pilot-ground-school.com/aerodynamics.html

Also Normal and Axial Forces

- Lift Force perpendicular to relative wind
- Normal Force perpendicular to some body axis
- In some literature, Normal Force is called the "Lift Force" (NOTE: the E80 web site is one of these)

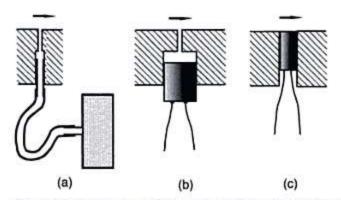
Pressure and velocity on an airfoil

Pressure contours

Mach number contours

http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf04/raetaf04.html

Pressure sensors



Absolute pressure sensor

Differential pressure sensor

http://sigma.octopart.com/8927755/image/Freescale-Semiconductor-MPXV4006GC7U.jpg http://twarm.com/commerce/product_info.php?cPath=158_164&products_id=3391&sid=98

Pressure sensors

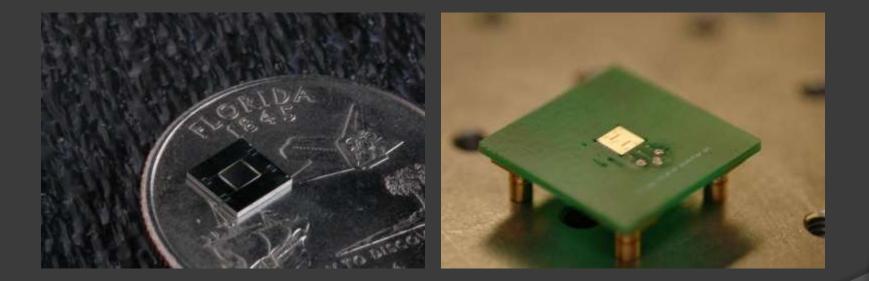

the measurement of wall pressure:

Figure 8.6. Various ways of connecting pressure transducers for the measurement of wall pressure: (a) remote connection, (b) cavity mounting, and (c) fluch mounting.

Wall Shear Stress

- Wall shear stress (due to frictional forces) contributes to lift and drag
- Common to measure pressure distribution over a surface in a wind tunnel
 - Pressure transducers
- Less common to measure wall shear stress
 - Floating MEMS sensors, optical coatings
- Integrate surface pressure and shear stress to calculate resultant force

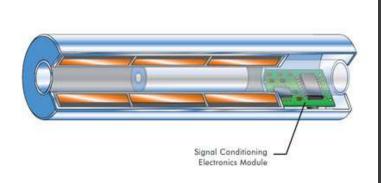
Wall shear stress sensor

http://www.nasa.gov/topics/aeronautics/features/shear_stress.html

Force Balance: the heart of a wind tunnel

- Rather than measuring pressure and wall shear stress and then integrating, we measure forces on our model (good balances measure moments as well)
- Instruments often measure a deflection or strain, produce a voltage, and relate that to force
 - Strain gages
 - Linear variable differential transformers (LVDT)

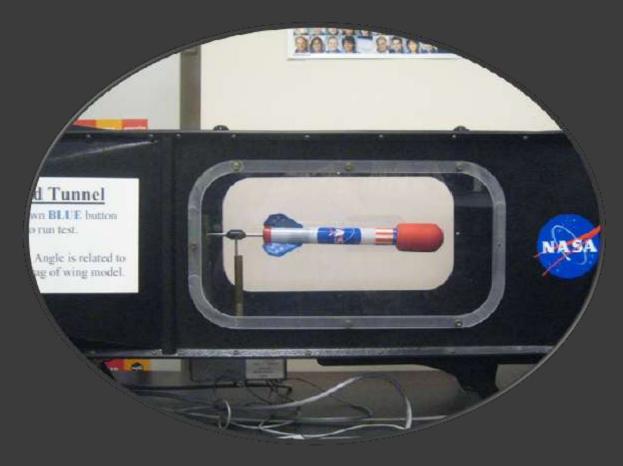
Force Coefficients


•
$$F_L = \text{lift} = \frac{1}{2}\rho V^2 A C_L$$

- Where $\rho =$ free stream density
 - V = free stream velocity
 - A = reference area
 - C_L = lift coefficient

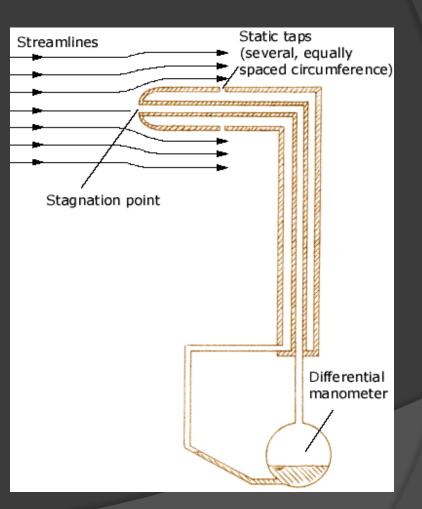
•
$$F_D = \text{drag} = \frac{1}{2}\rho V^2 A C_D$$

- Where $C_D = drag$ coefficient
- We're going to experimentally determine drag coefficients as part of this lab
 - Measure drag force
 - Measure flow velocity


LVDT

http://www.macrosensors.com/lvdt_tutorial.html http://www.singer-instruments.com/sites/default/files/documents/products/Low-Range-Force-Sensors-F-and-FD-series.pdf

Sting Balance


- Note: Tare Forces (from the Arabic "tarha" meaning "deduction") will act on the sting
- Random historical fact: early models were suspended from thin wires; unfortunately, drag on the wires sometimes exceeded model drag by a factor of 10!

Velocity Measurements

- Pitot-static tube
- MPX53DP differential pressure sensor

 Piezoresistive pressure sensor. Pressure causes resistance change in silicon diaphragm, output as voltage

Pitot-static measurement

- Stagnation, or total, pressure, P_0 . Pressure of the gas when the fluid velocity is zero.
- Static pressure, P what you probably think of when you think of pressure

•
$$V = \sqrt{\frac{2(P_0 - P)}{\rho}}$$
 (this is Bernoulli's eqn again)

 Our differential pressure sensor measures the difference between stagnation and static P

• What kind of pressure sensor shall we use?

Where on the rocket will we get a stagnation point? Where on the rocket should we measure static pressure?

Pitot Tube Static Port

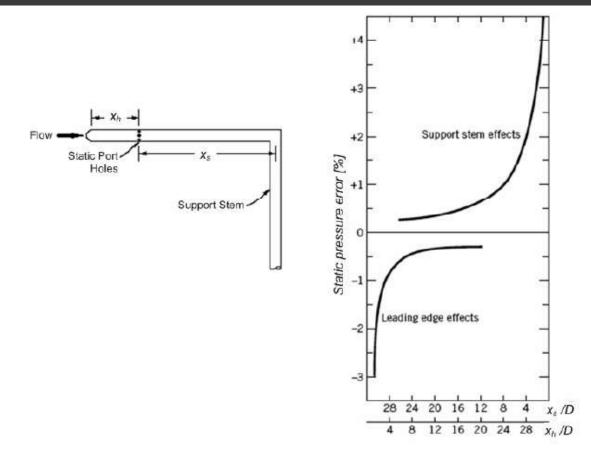


Figure 4. Static pressure errors due to static port hole placement.

http://search.asee.org/search/fetch:jsessionid=459m5p7k76jr7?url=file%3A%2F%2Flocalhost%2FE%3A%2Fsearch%2Fconference%2F17% 2FAC%25202008Full522.pdf&index=conference_papers&space=129746797203605791716676178&type=application%2Fpdf&charset=

Similarity and Dimensional Analysis

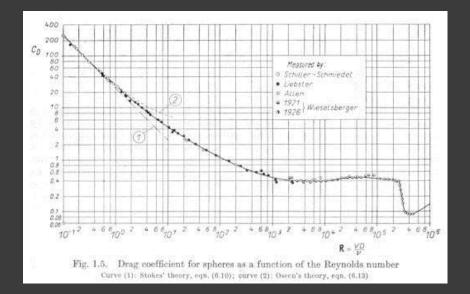
- Similarity: How to make sure our scale models in the tunnel simulate our real-life vehicle
 - geometric, kinematic, and dynamic
- Dimensional Analysis: Method for reducing the number and complexity of experimental variables that affect a given physical phenomenon
 - Helps us be more efficient, keeps us from running redundant experiments, helps with insight
 - Will explain where our force coefficients came from

Similarity

- Geometric similarity: all body dimensions in all three coordinates have the same linear scale ratio
- Kinematic similarity: same length scale ratio and same time scale ratio (this means the velocity scale ratio will be the same)
- Dynamic similarity: same length scale, time scale, and force (or mass) scale ratios
 - Means that forces are in the same ratio and have equivalent directions between the real thing and scaled model

Similarity

- To get complete similarity for a general flow field, we need to have geometric, kinematic, and dynamic similarity
- Reynolds number, Re, governs this for the type of fluid flow we are interested in for E80
 - $Re = \frac{\rho VL}{\mu}$ (dimensionless)
 - L = characteristic length scale
 - μ =fluid viscosity

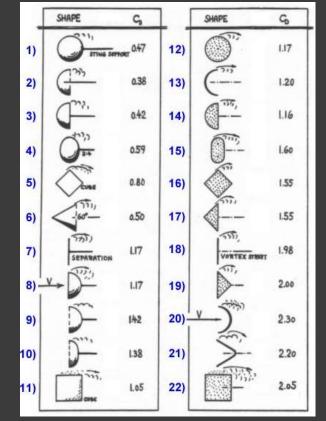

Dimensional Analysis

- We want to determine drag force on our sphere
- We think that F_D =f(length-scale, velocity, density, viscosity)
 - Why both density and viscosity? Can change fluid, also can change temperature
- We could run experiments that vary those 4 parameters, measure drag force, then extract a functional relationship

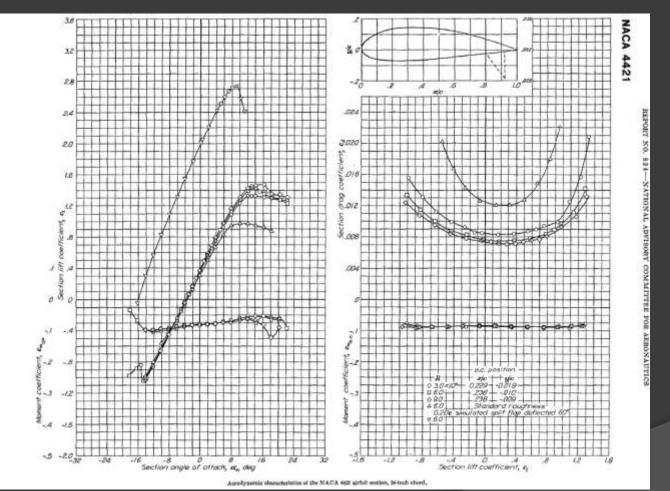
Dimensional Analysis

- Let's not do it that way (costly, could be difficult, and it turns out that not all of the combinations we could run are independent)
- DA gives us the number and form of independent dimensionless parameters which govern our physical phenomenon
 - How? Buckingham Pi (you have seen this in E72)

Coefficient of Drag



Cd of spheres as f(Re)


100000<Re<1E6 3d on left, 2d on right

http://www.uh.edu/engines/epi1529.htm

http://www.aerospaceweb.org/question/aerodynamics/drag/drag-shapes.jpg

Aero characteristics for NACA 4421 airfoil

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930090976_1993090976.pdf

What area to use in force coeffs?

- Spheres?
- Airfoils?
- Rockets?
- Foreshadowing
 - How does OpenRocket use these?
 - RockSim?

Implications beyond E80

- Lowered drag coefficients for vehicles
 - Aviation efficiency
 - Fuel cost have been driving this (we see big leaps in drag reduction when fuel price increases)
 - Car efficiency
 - Toyota Prius: drag coefficient of 0.25
 - Mercedes G Class: drag coefficient of 0.53

