
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Important Dates

- 21 JAN 2016 - Labs Begin (Section 4)
- 29 JAN 2016-1 $1^{\text {st }}$ LabVIEW Assignment Due \qquad
- 10 MAR 2016 - Final Project Begins \qquad
- 16 APR 2016 - Final Project Launch 1
- 23 APR 2016 - Final Project Launch 2
- 2 MAY 2016 - Final Presentation, Final Project Due

Course Objectives

By the end of the course students will:

1. Demonstrate hardware and equipment skills
2. Demonstrate experimental and analytical skills
3. Demonstrate the beginnings of professional practice

Course Structure

- Informational Lectures
- TTh from today through 25 FEB +2
- Pre-lab
- Modeling and Data Manipulation Prep
- VIs \& Code, Equipment Manuals, Ask Professors
- 6-hour Lab Sessions
\qquad
- LabVIEW assignments
- Tech Memo
- Final Project
- Launches

Final Report

- Final Presentation

The E80 Website

- Fount of almost all knowledge (sort of like Wikipedia but harder to search)
- Sakai used for submission of LabVIEW assignments and labs, and finding the latest lecture video streams, but almost nothing else
http://www.eng.hmc.edu/NewE80/index.html
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

HMC Engineering Value Added

- Technical Excellence
- Grasps essence of problem quickly
- Self educates quickly to needed expertise \qquad
- Not stuck in narrow expertise
- Delivers top-notch results quickly
- Communicates needs and solutions professionally

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

When could you be stuck on the escalator?

\qquad

- Unfamiliar equation in lecture
- Unfamiliar term in data sheet
\qquad
- Not enough detail in lab instructions
- Didn't quite get E59 and you're expected to use it, e.g., impedance
- Staring at a LabVIEW VI
- Expected to do an error analysis

E80 Expectations

- Professional Practice
- Be prepared (do pre-lab).
- Don't expect to be hand fed.
- Ask for help when you're not making progress.
- Budget your time, e.g., Section 3 completed by 8:30 PM.
- Make efficient use of your team.

Experimental Engineering

- Determine Experimental Objectives.
- Model experiment to determine expected ranges of measured variables, and useful range of specified parameters. \qquad
- Use model to develop error models.
- Perform initial experiments and compare results with expectations and error estimates. \qquad
- Adjust input parameters to account for lessons learned.

Experimental Engineering (cont.)

- Perform remaining experiments.
- Plot experimental results with error bars on same graph with modeled results.
- Quantitatively explain similarities and differences.
- Quantitatively determine degree of attainment of Experimental Objectives.
- Make quantitative recommendations for future work.

Pre-Lab

- Read through the entire lab
- Create outline of lab report
- Determine relative importance of different sections
- Allocate time to different sections, e.g., if Section 1 is worth 10%, allocate 10% of 6 hours $=36$ minutes. Plan to have it done by 7:06 PM.
- Allocate prep for different sections to team members

Pre-Lab (cont.)

- Determine which lecture(s) apply to this specific lab.
- Use lecture material to start writing report.
- Open and learn software and/or VIs that are specific to this lab.
- Set up models or spreadsheets for processing data. \qquad
- Test process example or synthetic data.

Pre-Lab (cont.)

- Use model and/or other info to determine input parameter ranges and output variable ranges.
- Read manuals for any unfamiliar equipment.
- Prepare list of questions for proctors and/or professors. Visit prof's as needed.
- Develop process router, task assignment for lab.

Pre- \& Intra-Lab Don'ts

- You may NOT collect data (for you experiment).
- You may NOT manipulate or test hardware (except for your personally-owned myDAQ).
- You may NOT populate a protoboard.
- You may NOT use the laboratory equipment outside of lab.
- You may NOT process data collected during the lab.
- When in doubt, ask.

The E80 Website
Fount of almost all knowledge (sort of like Wikipedia but harder to search) http://www.eng.hmc.edu/NewE80/index.htm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Modeling and Measurement of Rocket Performance

- Full Full Model
$\frac{d}{d t}(m \vec{v})=\sum \vec{F}=$ Thrust + Lift - Drag - Weight
$\frac{d}{d t}(J \vec{\omega})=\sum \vec{T}$
\qquad

Modeling and Measurement of Rocket Performance

- Full Model
$m \ddot{\vec{x}}=\sum \vec{F}=$ Thrust - Drag - Weight
$J \ddot{\vec{\theta}}=\sum \vec{T}$
\qquad

$$
-
$$

$$
\vec{x}(t)=\vec{x}_{0}+\vec{v}_{0} t+\int_{0}^{t} \int_{0}^{t} \vec{a} d t d t
$$

\qquad

Numerical Derivatives

- For a set of points
taken at times
$x_{0}, x_{1}, x_{2}, \ldots$
$t_{0}, t_{1}, t_{2}, \ldots$
\qquad
- Forward Difference

$$
v_{n}=\frac{x_{n+1}-x_{n}}{t_{n+1}-t_{n}}
$$

\qquad

- Backward Difference

$$
v_{n}=\frac{x_{n}-x_{n-1}}{t_{n}-t_{n-1}}
$$

\qquad
\qquad

Noise Reduction

\qquad

- Lowpass filter signal, derivative, or both
- Fit a smooth analytical function, e.g., cubic spline \qquad
-Take analytical derivative \qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

FAA Regulations

- Class 1 - a model rocket that uses no more than 125 grams (4.4 ounces) of propellant; uses a slow-burning propellant; is made of paper, wood, or breakable plastic; contains no substantial metal parts; and weighs no more than 1,500 grams (53 ounces) including the propellant - Requires permission of the Fire Department and the propertyowner.
- Class $\mathbf{2}$-ahigh power rocket, other than a model rocket, that is propelled by amotor or motors having a combined total impulse of 40,960 Newton-seconds (9,208 pound-seconds) or less - Requires permission of FAA, Fire Department, and property owner. Operator must
also be TRA or NAR certified.
also be TRA or NAR certified.
Class 3 - an advanced high power rocket, other than a model rocket or high-power rocket Has lots of regulatory restrictions.
- Rockets flown in California require either State Fire Marshall certified motors or a bunch of permits.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NAR or Tripoli Certification

\qquad

- Level 1
- Can fly H and I impulse motors
\qquad
\qquad
- Level 2
- Can fly J, K, and Limpulse motors \qquad
- Level 3
- Can fly M and above

9 APR 2016 ROC Launch

- 1 week before our first launch
- One team member can certify Level 1.
- Have to construct the Final Project rocket yourself.
- Have to prep and load the motor yourself. \qquad
- NAR best for general rocketeers
- Tripoli best for BIG rockets \qquad
- Can test out rocket if desired.

