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Sensors 

§  People 
    http://en.wikipedia.org/wiki/File:Bigotolith.jpg 
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Sensors 

§  Accelerometers 

 a =  k x / m 
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Sensors 

§  Accelerometers 
q  The accelerometers are typically MEMS based  
q  They are small cantilever beams (~100 µm) 

Khir MH, Qu P, Qu H - Sensors (Basel) (2011) 
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Sensors 

§  Gyroscopes (original) 
q  Mounted on two nested gimbals, the spinning wheel of the 

gyroscope is free to take any orientation.  

q  High spin rate leads to high angular momentum  
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Sensors 

http://www.youtube.com/watch?v=cquvA_IpEsA 
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Sensors 

§  Gyroscopes (original) 
q  The gyroscope resists any change of orientation caused by 

external torques, due to the principle of conservation of 
angular momentum.  

q  The orientation of the gyroscope remains nearly fixed, 
regardless of any motion of the platform. 
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Sensors 

§  Gyroscopes (original) 
q  Gyroscope orientation can be obtained by measuring the 

angles between adjacent gimbals. 
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Sensors 

§  MEMS (Microelectromechanical Systems) Gyroscopes 
q  Two masses oscillate back and forth from the center of rotation 

with velocity v. 
q  A rotation will cause a Coriolis force in this coordinate frame. 
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Sensors 

§  MEMS Gyroscopes 
q  Their deflection y is measured, to establish a force  

    FCoriolis = k y 

q  The acceleration is obtained since the mass is known  
      -2m |Ω x v| = FCoriolis 
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Sensors 

§  Inertial Measurement Units 
q  3 Accelerometers 
q  3 Gyroscopes 
q  3 Magnetometers(?) 

                     www.barnardmicrosystems.com 
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Sensors 

§  Inertial Measurement Units 
        
             Y 
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Representations 

§  Cartesian 
Coordinate Frames 
q  We can represent the 

3D position of a 
vehicle with the 
vector  

 r =[ x y z ] 
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Representations 

§  Euler Angles 
q  We can represent the 3D 

orientation of a vehicle with the 
vector  
  ϕ = [ α β γ ] 

  Yaw - α 
  Pitch - β 
  Roll – γ 

http://appsmediatama.net/tag/the-quadcopter-how-to-
compute-the-pitch-roll-and-yaw 
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Representations 

§  Where do we place the 
origin? 
q  We can fix the origin at a 

specific location on earth, e.g. 
a rocket’s launch pad.  

q  This is called the global or 
inertial coordinate frame 

X 

Y 

Z 

r =[x y z] 
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Representations 

§  Where do we place the 
origin? 
q  We can ALSO fix the origin on a 

vehicle. 
q  This is called the local 

coordinate frame 

X 

Y 

Z 

Z 
X 

Y 

r =[x y z] 
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Representations 

§  Where do we place the 
origin? 
q  We must differentiate between 

these two frames. 
q  What is the real difference 

between these two frames? 
q  A Transformation consisting of a 

rotation and translation 

XG 

YG 

ZG 

ZL 
XL 

YL 

r =[x y z] 
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Representations 

§  Transformations 
q  The rotation can be 

about 3 axes (i.e. the 
roll, pitch, yaw) 

ZL 

XL 

YL 

XG 

YG 

ZG 

γ 

β 

α 
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Representations 

§  Transformations 
q  The rotation can be 

about 3 axes (i.e. the 
roll, pitch, yaw) 

ZL 
XL 

YL 

XG 

YG 

ZG 
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Representations 

§  Transformations 
q  The translation can 

be in three directions 

r =[x y z] 

ZL 
XL 

YL 

XG 

YG 

ZG 
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Representations 

§  Rotations 
q  In 2D, it is easy to 

determine the effects of 
rotation on a vector  

 q2 =    cos(α)  -sin(α)    q1  
            sin(α)   cos(α) 

      = R(α) q1 

Y 

q1 

X 

α 

q2 
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Representations 

§  Rotations 
q  We want to determine the 

rocket acceleration with 
respect to the global frame 

YG 

XG 

aG =? 
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Representations 

§  Rotations 
q  We can measure rocket 

acceleration in the local frame. 
YL 

XL 

aL 
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Representations 

§  Rotations 
q  To get the acceleration vector 

in the Global frame, we rotate 
the acceleration vector in the 
local frame by α – the rotation 
angle between frames 

YG 

XG 

YL 
XL 

a 

α 
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Representations 

§  Rotations 
q  Here, we want to determine 

how acceleration in one frame 
relates to acceleration in 
another. 

 ax,G  =   cos(α)  -sin(α)      ax,L  
 ay,G       sin(α)   cos(α)      ay,L 

  aG = R(α) aL 

YG 

XG 
α 

YL 
XL 

ax,L 

ay,L 
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Representations 

§  Rotations 
q  Here, we want to determine 

how acceleration in one frame 
relates to acceleration in 
another. 

 ax,G  =   cos(α)  -sin(α)      ax,L  
 ay,G       sin(α)   cos(α)      ay,L 

  aG = R(α) aL 

YG 

XG 
α 

YL 
XL 

ax,G 

ay,G 
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Representations 

§  Rotations 
q  In 3D, we can use similar 

rotation matrices 

 q2 =   1           0            0        q1  
                 0        cos(γ)   -sin(γ) 

          0        sin(γ)    cos(γ) 

      = Rx(γ) q1 

q1 q2 

XG 

YG 

ZG 

γ 



E80 
Experimental Engineering 

Representations 
Rx(γ) =        1           0            0 
                    0        cos(γ)   -sin(γ) 

             0        sin(γ)    cos(γ) 

Ry(β) =    cos(β)        0       sin(β) 
                    0             1          0 

         -sin(β)        0       cos(β) 

Rz(α) =     cos(α)   -sin(α)      0 
                 sin(α)    cos(α)      0 
                    0            0          1 
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Representations 

§  Rotations 
q  For 3 rotations, we can write a general Rotation Matrix 
     

   R(α, β, γ) = Rz(α) Ry(β) Rx(γ) 

q  Hence, we can rotate any vector with the general 
Rotation Matrix 

     
            q2 = R(α, β, γ) q1 



E80 
Experimental Engineering 

Representations 

§  Rotations 

q  Hence, we can rotate any acceleration vector in a local 
frame through roll, pitch, yaw angles to get the 
corresponding acceleration vector in the global frame 

            aG = R(α, β, γ) aL 
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State Estimation 

§  Strapdown Inertial 
Navigation 
q  Our IMU is fixed to the 

local frame 
q  We care about the 

state of the vehicle in 
the global frame 

r =[x y z] 

ZL 
XL 

YL 

XG 

YG 

ZG IMU 
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Updating R(t) 
   

  Given:  ωL(t) = [ ωx,L(t) ωy,L(t) ωz,L(t) ] 
     

  Find:   R(t) 
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Updating R(t) 
§  Lets define the rotational velocity matrix based on 

our gyroscope measurements ωL= [ωx,L(t) ωy,L(t) ωz,L(t)] 

  Ω(t)    =      0       -ωz(t)    ωy(t) 
                 ωz(t)      0        -ωx(t) 
              -ωy(t)    ωx(t)       0 
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Updating R(t) 
§  It can be shown that the vehicle rotating with 

velocity Ω(t) for δt seconds will (approximately) yield 
the resulting rotation Matrix R(t+δt): 

      R(t+δt) = R(t) [ I + Ω(t)δt ] 



E80 
Experimental Engineering 

Updating r(t) 
   

  Given:  aL = [ ax,L ay,L az,L ] 
    R(t) 

  Find:   rG = [ xG   yG  zG ] 
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Updating r(t) 
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Updating r(t) 
§  First, convert to global reference frame 

   
   aG(t) = R(t) aL(t) 

§  Second, remove gravity term 
   aG(t) = [ ax,G(t)   ay,G(t)   az,G(t)-g ] 
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Updating r(t) 
§  Third, integrate to obtain velocity 

   
   vG(t) = vG(0)  +    aG(τ) dτ 

§  Fourth, integrate to obtain position 
    
   rG(t) = rG(0)  +    vG(τ) dτ 

  t 

0 

  t 

0 
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Updating r(t) 
§  Third, integrate to obtain (approximate) velocity 

   
   vG(t+δt) = vG(t)  +  aG(t+δt) δt 

§  Fourth, integrate to obtain (approximate) position 
    
   rG(t+δt) = rG(t)  +  vG(t+δt) δt 
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State Estimation 

 for t = 0 to maxTime 

 { 
  ω(t) = … 
  aL(t) = … 

  R(t) = … 
  aG(t) = … 
  aG(t)  = … // subtract gravity 
  vG(t)  = … 
  rG(t)  = … 
  … 
 } 
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State Estimation 

§  What about Errors? 
q  We could use Error Propagation 

   rG(t+δt) = rG(t)  +  vG(t+δt) δt 

q  So 
  erG(t+δt)2 =  drG(t+δt ) 2 erG(t)2  +  drG(t+δt )  2 evG(t+δt)2 
            drG(t)                dvG(t+δt) 
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State Estimation 

 for t = 0 to maxTime 

 { 
  ω(t) = … 
  aL(t) = … 

  R(t) = … 
  aG(t) = … 
  aG(t)  = … // subtract gravity 
  vG(t)  = … 
  rG(t)  = … 
  erG(t)  = … 
 } 
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State Estimation 

§  What is bad about the second term? 

  erG(t+δt)2 =  drG(t+δt ) 2 erG(t)2  +  drG(t+δt )  2 evG(t+δt)2 
            drG(t)                dvG(t+δt) 
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State Estimation 

§  Errors accumulate! 
q  Each error is a function of the error from the previous time 

step 
  erG(t+δt)2 =  drG(t+δt ) 2 erG(t)2  +  drG(t+δt )  2 evG(t+δt)2 
            drG(t)                dvG(t+δt) 

q  For example 
      erG(t) = f(erG(t-δt), evG(t)) 
      erG(t-δt) = f(erG(t-2δt), evG(t-δt)) 
    … 
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Example Systems 

§  LN-3 Inertial Navigation System 
q  Developed in 1960’s 
q  Used gyros to help steady the 

platform 
q  Accelerometers on the platform 

were used to obtain accelerations 
in global coordinate frame 

q  Accelerations (double) integrated 
to obtain position 
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Example Systems 

§  The Jaguar Lite 
q  Equipped with an 

IMU, camera, laser 
scanner, encoders, 
GPS 
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Example Systems 

§  The Jaguar Lite 
q  GUI provides 

acceleration 
measurements 
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Example Systems 

§  Question: 
q  Can we use the accelerometers alone to measure 

orientation? 

α 
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q  Exteroceptive Sensing 
q  Fusing measurements 
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Bounding our Errors 

§  Exteroceptive sensors 
q  Drift in inertial navigation is a problem 
q  We often use exteroceptive sensors – which measure outside 

the robot – to bound our errors 
q  Examples include vision systems, GPS, range finders 
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Bounding our Errors 

§  Exteroceptive sensors 
q  We can fuse measurements, e.g. integrated accelerometer 

measurements and range measurements, by averaging.  
q  For example, consider the 1D position estimate of the jaguar. 

      x = 0.5 ( xIMU + (xwall - xlaser) ) 

  xIMU is the double integrated IMU measurement 
  xwall is the distance from the origin to the wall 
  xlaser is the central range measurement 
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Bounding our Errors 

§  Exteroceptive sensors 
q  Lets weight the average, where weights reflect 

measurement confidence 

      x = wIMU xIMU + wlaser(xwall - xlaser)  
    wIMU + wlaser 
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Bounding our Errors 

§  Exteroceptive sensors 
q  This leads us to a 1D Kalman Filter 

      xt = xIMU,t + Kt [(xwall – xlaser,t ) -  xIMU,t ] 

     
      Kt =         σ2

IMU 
     σ2

IMU + σ2
laser 

      σ2
x  = (1 – Kt ) σ2

IMU 
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Bounding our Errors 

§  IMU  
q  Higher sampling rate 
q  Small errors between time steps (maybe centimeters) 
q  Uncertainty increases 
q  Large build up over time (unbounded) 

§  GPS 
q  Lower sampling rate 
q  Larger errors(maybe meters) 
q  Uncertainty decreases 
q  No build up (bounded) 
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Bounding our Errors 

        http://www.youtube.com/watch?v=I_cCeGm4x4c 
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Shark Tracking 
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Shark Tagging 
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Result: Boat Track 
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Result: Boat Track 
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Result: Shark Track 


