Dynamic Beam Analytical Solution

The general solution for displacement of a single-span, free-free beam shown in figure 1 is:

Figure 1: Schematic of a free-free beam

For this system, natural frequencies are

$$\omega_n = \beta_n^2 \sqrt{\frac{EI_z}{\rho A}} = (\beta_n L)^2 \sqrt{\frac{EI_z}{\rho A L^4}}$$

in which E is Young's modulus, I_z is second moment of the beam, A is cross sectional area of the beam and ρ is density. See Appendix 1 for basic beam calculations.

 β_n is dependent upon the beam's boundary conditions. Values for β_n for some typical boundary conditions are presented in Table 1.

Boundary Conditions	Frequency Equations	$\beta_1 L$	$\beta_2 L$	$\beta_2 L$
Pinned-pinned	$\sin\beta L = 0$	3.141	6.282	9.423
Fixed-free	$\cos\beta L \cosh\beta L + 1 = 0$	1.875	4.694	7.855
Fixed-pinned (and pinned-free)	$\tan \beta L = \tanh \beta L$	3.927	7.069	10.210
Fixed-fixed (and free-free)	$\cos\beta L \cosh\beta L = 1$	4.730	7.853	10.996
Fixed-sliding (and free-sliding)	$\tan\beta L + \tanh\beta L = 1$	2.365	5.498	8.639

Table 1: Natural Frequencies for Single-Span Beams

For the experiments of dynamic beam, use Polycarbonate as the material used and measure cross sectional dimensions of the beam. Use proper equation from Table 1 to obtain the values for β_n .

Reference: "Structural Dynamics, The theory and applications," Joseph W. Tedesco, Addison Wesley Longman Inc., 1999

Appendix 1: Calculation of beam's cross sectional properties

Cross section of a hollow cylinder

$$A = \pi (r_o^2 - r_i^2)$$

$$I = \frac{1}{4}\pi (r_o^{4} - r_i^{4})$$