Experimental Engineering

Lecture 2

Data Fitting

Jan. 24, 2013

Outline

- Confidence in Measurements
- Linear Regression
- Error Propagation
- Quantization Error

Experimental Engineering

Confidence in Measurements

- Consider the GPS measurements of my AUV...

Experimental Engineering

Confidence in Measurements

- Zoom in, and you can see the AUV when it isn' \dagger moving

What is the AUV's location?

Experimental Engineering

Confidence in Measurements

- When we take measurements, we want to know how "good" they are.
- We establish measures of confidence in our measurements
- E.g. confidence limits, standard deviation, variance, etc.

Experimental Engineering

Confidence in Measurements

- Lets just consider the case where we want to estimate the actual longitude

$$
\mu_{x}
$$

- Consider N measurements of longitude

$$
x_{1}, x_{2}, x_{3}, \ldots x_{N}
$$

Confidence in Measurements

- For these N measurements, the sample mean is

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i},
$$

- We define the residual error, for each measurement, to be

$$
e_{i}=x_{i}-\bar{x}
$$

Confidence in Measurements

- We characterize our residual errors using the sample variance:

$$
S^{2} \equiv \frac{1}{N-1} \sum_{i=1}^{N} e_{i}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

- The sample standard deviation can be defined as:

$$
S=\sqrt{S^{2}}
$$

Confidence in Measurements

- The sample variance S^{2} characterizes the spread of the measurements.
- We estimate how far the sample mean is from the actual value using the estimated standard error:

$$
E S E=\frac{S}{\sqrt{N}}
$$

Experimental Engineering

Confidence in Measurements

- Lets get back to our AUV's GPS measurements of longitude. Here are N measurements:

- The corresponding sample mean, sample variance, and estimated standard error are:

$$
\bar{x}=-120.626368 \quad S=7.71967 E-06 \quad E S E=3.8265 E-07
$$

Experimental Engineering

Confidence in Measurements

- We can use the estimated standard error, to determine confidence intervals.
- That is, we can say
μ is within +/- λ of \bar{x}
with $P \%$ confidence

$\mu=$?

Experimental Engineering

Confidence in Measurements

- For example:
actual longitude is within $+/-0.00000075^{\circ}$ of -120.626368° with 95% confidence

Experimental Engineering

Confidence in Measurements

- Where does $\lambda=0.00000075$ come from?

$$
\lambda=E S E^{*} t
$$

- "Students t value"
- The value of t relates the confidence interval to the area under a standard distribution

Experimental Engineering

Confidence in Measurements

- What is t ?
- Represents the limits of a standard distribution that encapsulates $1-P$ of area under the distribution
- The df are the degrees of freedom, which is the number of samples N minus number of parameters estimated

SIGNIFICANCE LEVEL FOR TWO-TAILED TEST						
df	.20	.10	.05	.02	.01	.001
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31.598
3	1.638	2.353	3.182	4.541	5.841	12.941
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.859
10	1.372	1.812	2.228	2.764	3.169	4.587
20	1.325	1.725	2.086	2.528	2.845	3.850
30	1.310	1.697	2.042	2.457	2.750	3.646
40	1.303	1.684	2.021	2.423	2.704	3.551
60	1.296	1.671	2.000	2.390	2.660	3.460
120	1.289	1.658	1.980	2.358	2.617	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.291

Experimental Engineering

Confidence in Measurements

- Summary:

1. Calculate your meañ x
2. Calculate your estimated standard error ESE
3. For a given df and significance level $=1-P$, find t from table
4. Calculate $\lambda=E S E * t$

Outline

- Confidence in Measurements
- Linear Regression
- Error Propagation
- Quantization Error

Experimental Engineering

Linear Regression

- Sometimes we measure one variable x, but are interested in another variable $y=f(x)$
- Often, $f($) is assumed to be linear

$$
y=\beta_{0}+\beta_{1} x
$$

Linear Regression

- Shark tracking Example...

Linear Regression

- Shark tracking Example...

Linear Regression

- We usually must estimate the coefficients β_{0} and β_{1}. from a data set:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right)
$$

- Our model becomes

$$
\hat{y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x
$$

Linear Regression

- To estimate β_{0} and β_{1} we minimize the sum of squared errors:

$$
S S E=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left[y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right]^{2}
$$

- This minimization results in

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \quad \hat{\beta}_{1}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

Linear Regression

- How much confidence do we have in $\hat{\beta}_{0}$ and $\widehat{\beta}_{1}$?

$$
S_{e}=\sqrt{\frac{\operatorname{SSE}}{N-2}}=\sqrt{\frac{\sum_{i=1}^{N} e_{i}^{2}}{N-2}} .
$$

Linear Regression

- How much confidence do we have in $\hat{\beta}_{0}$ and $\widehat{\beta}_{1}$?

$$
\begin{gathered}
S_{\beta_{0}}=S_{e} \sqrt{\frac{1}{N}+\frac{\bar{x}^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}} . \quad S_{\beta_{1}}=S_{e} \sqrt{\frac{1}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}} . \\
\lambda_{\beta 0}=t S_{\beta 0}
\end{gathered}
$$

Linear Regression

- How much confidence do we have in y ?

$$
\begin{gathered}
S_{y}=S_{e} \sqrt{\frac{1}{N}+\frac{(x-\bar{x})^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}} \\
\lambda_{y}=t S_{y}
\end{gathered}
$$

Linear Regression

- Quick Summary:
- Given a set of (x, y) pairs, we can calculate

1. The coefficient estimates $\hat{\beta}_{0,} \hat{\beta}_{1}$ of the linear regression
2. The confidence limits $\lambda_{\beta 0}, \lambda_{\beta 1}$ on the coefficients
3. The confidence limits λ_{y} on the y values

Outline

- Confidence in Measurements
- Linear Regression
- Error Propagation
- Quantization Error

Error Propagation

- Given a function $F(x, y, z, \ldots$), and known error in variables x, y, z, \ldots, what is the error in F ?

Error Propagation

- Lets assume that errors are small and that we can make a first order Taylor series approximation:

$$
F-F_{\text {true }}=\frac{\partial F}{\partial x}\left(x-x_{\text {true }}\right)+\frac{\partial F}{\partial y}\left(y-y_{\text {true }}\right)+\frac{\partial F}{\partial z}\left(z-z_{\text {true }}\right)+\cdots .
$$

Error Propagation

- For errors $\varepsilon=x-x_{\text {true }}$, that are systematic, known, and small, we can rewrite as:

$$
\varepsilon_{F}=\frac{\partial F}{\partial x} \varepsilon_{x}+\frac{\partial F}{\partial y} \varepsilon_{y}+\frac{\partial F}{\partial z} \varepsilon_{z}+\cdots .
$$

Error Propagation

- If errors of x, y, z, \ldots are independent random variables, then standard errors are assumed related by:

$$
\varepsilon_{F}=\sqrt{\left(\frac{\partial F}{\partial x}\right)^{2} \varepsilon_{x}^{2}+\left(\frac{\partial F}{\partial y}\right)^{2} \varepsilon_{y}^{2}+\left(\frac{\partial F}{\partial z}\right)^{2} \varepsilon_{z}^{2}+\ldots}
$$

Error Propagation

- Example:
- We model the range to a shark tag ρ as a function of the strength of the received acoustic signal s.

$$
\rho=K_{s} s^{a}
$$

where
$a<1$ is constant

Experimental Engineering

Error Propagation

- Example cont':
- If we know the sample variance $S_{s}{ }^{2}$ in signal strength measurements, and the variance $S_{K}{ }^{2}$ in $K_{s^{\prime}}$, we can calculate the corresponding variance in range $S_{\rho}{ }^{2}$

$$
\begin{aligned}
S_{\rho}^{2} & =(d \rho / d s)^{2} S_{s}^{2}+\left(d \rho / d K_{s}\right)^{2} S_{K}^{2} \\
& =\left(a K_{s} s^{a-1}\right)^{2} S_{s}^{2}+\left(s^{a}\right)^{2} S_{K}^{2}
\end{aligned}
$$

Outline

- Confidence in Measurements
- Linear Regression
- Error Propagation
- Quantization Error

Quantization Error

- Lets revisit the static AUV plot of positions...

We have ~ 0.1 meter resolution

Quantization Error

- We often witness finite precision in our sensors.
- If the sample standard deviation S of our measurements is much larger than the quantization error (e.g. 10 times greater), we can ignore the quantization error.
- For the GPS longitude measurements which have $S>1$ meter, we can ignore the quantization error.

Summary

- We can calculate confidence intervals for parameters being measured
- We can construct linear models relating two parameters, along with their confidence intervals
- We can approximate how the error of one parameter affects a function of that parameter
- We can check that the quantization error is insignificant

Experimental Engineering
To the Rescue

Quantization Error

- DMM Example:
- For a 12 bit DAQ , set to $+/-5 \mathrm{~V}$, the quantization range q is:

$$
q=10 \mathrm{~V} * 1 / 2^{12}=0.027 \mathrm{~V}
$$

- The standard deviation of measurements within q is

$$
S_{q}=q / \sqrt{12}
$$

$$
\begin{aligned}
& \text { If } S>10 S_{q^{\prime}} \text { ignore } S_{q} \\
& \text { If } S_{q}>S>10 S_{q^{\prime}} \text { let } S_{\text {used }}^{2}=S^{2}+S_{q}^{2}
\end{aligned}
$$

