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Data Analysis, Standard Error, and Confidence Limits 
E80 Spring 2011 Notes 

 
We Believe in the Truth 
We frequently assume (believe) when making measurements of something (like the 
mass of a rocket motor) that there is a true value, µ, of the measurement and that each 
individual measurement has some random error in it. We further assume (believe) that 
the true measurement lies at the center of a distribution of the noisy measurements, and 
that the distribution is normal (Gaussian) with a true standard deviation of ! . The 
question then arises: From our set of actual (noisy) measurements can we estimate the 
value of µ , and how certain are we of the estimate? In other words, if we measured the 
mass of a rocket motor a bunch of times, how close is our estimator to the actual mass, 
and how certain are we? 
Sample Mean of a Set of Measurements 
For a set of N measurements 
  x1, x2 ,!, xN , 
we can calculate the sample mean, 

 x =
1
N

xi
i=1

N

! , 

which we use as an estimate of the true value of the measured quantity, µ. If we knew 
the true value, we could calculate the error in each measurement as 
 ! i = xi ! µ . 

However, since we don’t know the true value, but only the sample mean, we can 
calculate the residuals 
 ei = xi ! x . 
Because our mean depends on our measurements, only N !1  of our residuals are 
independent. We have lost a degree of freedom in calculating our residuals, rather than 
our errors. 
We can characterize our residuals with the sample variance and sample standard deviation. 
The sample variance is 
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The last form is useful for calculations. The sample standard deviation is 

 S = S2 . 
The sample standard deviation is an estimate of ! , the true spread of the distribution of 
the measurements, but it doesn’t relate directly to how far the sample mean is from the 
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true value. That distance is related to the Standard Error, which in turn relates to the true 
standard deviation by 

 SE = !
N

. 

Since we believe in σ, but usually don’t have a way to determine σ, we’ll use S and the 
Estimated Standard Error, 

 
ESE = S

N
. 

For a set of measurement with sufficient individual measurements, the probability that 
the true value of the measurement is within a given range of the sample mean follows 
the normal distribution with the estimated standard error replacing the sample 
standard deviation, e.g., for a sample mean of 42.000 and a sample standard deviation 
of 0.100 in a set of 200 measurements, the estimated standard error is 

 ESE = S
N

= 0.100
200

= 0.0071 . 

The likely range of the true value relative to the sample mean is usually reported as a 
confidence interval, e.g.,  

 x = 42.000 ± 0.007 68%confidence interval( ) , 

which means that we are 68-percent certain that µ is within ±0.007 of 42.000. 
The confidence interval is usually calculated by multiplying the estimated standard 
error by a constant related to the area under a standard normal curve, ESE ! k( ) . For 
example, if we had sufficient measurements (and the 200 above qualifies), and we 
wanted a 95% confidence interval, the fraction of the area under a standard normal 
curve from !1.96  to +1.96 is 95%, so one would commonly calculate 

 x = 42.000 ± 0.0071!1.96 = 42.000 ± 0.014 95%confidence( ) . 

However, as the number of measurements decreases, the normal distribution under-
reports the uncertainty. One must use the Student’s (W.S. Gossett) t-value to accurately 
estimate the confidence interval. The confidence interval, ±! , is given by 

 ! = tESE = tS
N

, 

and t is the Student’s t-value determined given the degrees of freedom and the desired 
confidence limit. A portion of the two-tailed table follows: 
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 SIGNIFICANCE LEVEL FOR TWO-TAILED TEST 
df .20 .10 .05 .02 .01 .001 
1 3.078 6.314 12.706 31.821 63.657 636.619 
2 1.886 2.920 4.303 6.965 9.925 31.598 
3 1.638 2.353 3.182 4.541 5.841 12.941 
4 1.533 2.132 2.776 3.747 4.604 8.610 
5 1.476 2.015 2.571 3.365 4.032 6.859 

10 1.372 1.812 2.228 2.764 3.169 4.587 
20 1.325 1.725 2.086 2.528 2.845 3.850 
30 1.310 1.697 2.042 2.457 2.750 3.646 
40 1.303 1.684 2.021 2.423 2.704 3.551 
60 1.296 1.671 2.000 2.390 2.660 3.460 

120 1.289 1.658 1.980 2.358 2.617 3.373 
∞ 1.282 1.645 1.960 2.326 2.576 3.291 

 
For the example above, if we only had 11 measurements with the same sample mean of 
42.000 and sample standard deviation of 0.100, the degrees of freedom would be 
df = N !1 = 11!1 = 10  and the value of t for 95% confidence (5% significance) would be 
2.228 as opposed to 1.960 for the normal distribution and 

 ! = tESE = tS
N

= 2.228 0.100
11

= 2.228 0.030( ) = 0.067 , 

and we would report 

 x = 42.000 ± 0.067 95%confidence( ) . 

A subtlety that often escapes students is that ±!  is the uncertainty in the average or 
sample mean of the measurements, but the uncertainty in any individual measurement 
is governed by S, the sample standard deviation. This difference is even more important 
in linear regression. 
Linear Regression 

For a set of N measurement pairs,  x1, y1( ), x2 , y2( ),!, xN , yN( ) , we can assume that the 
measurements are linearly related by a function of the form 
 yi = !0 + !1xi + "i , 
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where the error, !i , is the difference between the true value of yi and the measured 
value of yi . xi  is assumed to either be known exactly, or to contain much less error than 
yi . 

 !i = yi " yi true( ) = yi " #0 + #1xi( ) . 
The true values of the set of y ’s and the true values of !0 and !1are most likely 
unknown, so we will again work with the residuals: 

 ŷi = !̂0 + !̂1xi , 
and 

 yi = !̂0 + !̂1xi + ei , 
where 

 ei = yi ! ŷi = yi ! "̂0 + "̂1xi( ) . 

And the circumflex (^) indicates an estimated value, just as x  is an estimate for µ and S 
is an estimate for σ. The most common form of linear regression involves minimizing 
the Sum of the Squared Residuals (SSE ). 

 SSE = ei
2

i=1

N

! = yi " #̂0 + #̂1xi( )$
%

&
'

i=1

N

!
2

. 

The results of the minimization (the derivation of which can be found many places) are 

 !̂1 =
xi " x( ) yi " y( )

i=1

N

#

xi " x( )2
i=1

N

#
, 

and 

 !̂0 = y " !̂1x , 
where x and y are the usual means. 
The equivalent of the sample standard deviation for linear regression is the Root Mean 
Squared Residual (RMSE) or Se . 

 Se =
SSE
N ! 2

=
ei
2

i=1

N

"
N ! 2

. 

The N ! 2 in the denominator comes from the fact that we have lost two degrees of 
freedom in our residuals because we calculated both !̂0 and !̂1 from our data. 
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The sample standard error for !̂0 is similar to the sample standard error for a single 
parameter but has a term to account for the linear fit 

 S!0 = Se
1
N

+
x 2

(xi " x )
2

i=1

N

#
. 

The expression for S!1 just has a term for the linear fit 

 S!1 = Se
1

(xi " x )
2

i=1

N

#
. 

As before, one must use the Student’s (W.S. Gossett) t-value to accurately estimate the 
confidence intervals for both !̂0 and !̂1 . The confidence interval, ±!"0

, is given by 

 !"0
= tS"0 , 

and ±!"1
by 

 !"1
= tS"1 . 

However, the degrees of freedom used in the table, df = N ! 2 , as explained above. 
Sometimes, after calculating the linear fit, one wants to know the confidence interval in 
y calculated for a specific x , ±!y . The sample standard error for y  is given by 

Sy = Se
1
N

+
x ! x( )2

xi ! x( )2
i=1

N

"
 

And the confidence interval as 
!y = tSy . 

This calculation gives you the confidence interval for the calculated average y  if you set 
the experiment to x  and repeated the measurement a number of times. Note that this 
question is very different than asking what the spread of measured values would be for 
y  if you set the experiment to x  and repeated the measurement a number of times. 
For generalized least-square parameter estimations, there are equivalent expressions 
that either can be derived from first principles, or found in the statistics literature. 
Propagation of Errors 
Often one needs to calculate a quantity based on several other measured quantities. The 
question arises: How do errors in the other measured quantities affect the calculated 
quantities. In particular, assume you have a function 
  F = F(x, y, z,!) . 
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How do you calculate the uncertainty or confidence interval in F given the 
uncertainties or confidence intervals in  x, y, z,!? 
Assume that the residuals are a reasonable approximation for the errors and that the 
errors are small. Then we can do a Taylor series expansion of F about the true values of 
the variables, and only keep the first-order terms 

 
 
F ! Ftrue =

"F
"x

x ! xtrue( ) + "F
"y

y ! ytrue( ) + "F
"z

z ! ztrue( ) +! . 

With the approximate substitution ! x = x " xtrue , etc. we have 

 
 
!F =

"F
"x

! x +
"F
"y

! y +
"F
"z

! z +! . 

If the errors are systematic, known, and small (so that the linear approximations are 
accurate) the above expression complete with the algebraic signs on the derivatives will 
permit one to calculate the error in F fairly accurately. 
However, the more common case is that the errors are random variables, ands one 
makes the assumptions that the errors are uncorrelated, i.e., for a set of data ! xi ,! yi , and 
! zi are completely independent of each other. In such a case the uncertainties add in a 
Root-Sum-of-Squares sense 
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An example will help to clarify the use of the equations: Suppose we want to calculate 
the resistance of an unknown resistor, RT, which is the bottom half of a voltage divider 
with known resistor R1 on top, and measured input and output voltages Vin and Vout. 
The equation for the resistance of RT is 

 RT =
R1Vout

Vin !Vout
. 

The desired expansion is (using a differential for the Taylor series) 

 dRT =
!RT
!R1

dR1 +
!RT
!Vin

dVin +
!RT
!Vout

dVout =
Vout

Vin "Vout
dR1 +

"R1Vout
Vin "Vout( )2

dVin +
R1Vin

Vin "Vout( )2
dVout . 

Assuming the residuals are good estimates for errors and that the errors are small 

 eRT =
Vout

Vin !Vout
eR1 +

!R1Vout
Vin !Vout( )2

eVin +
R1Vin

Vin !Vout( )2
eVout . 

If we knew the exact small values for the residuals, we could use the equation as is, but 
if we wanted to use the Standard Deviations, Standard Errors, or Confidence Intervals, 
and we can assume they are uncorrelated, we would add them in the RSS sense 
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 eRT =
Vout
2

Vin !Vout( )2
eR1
2 +

R1
2Vout

2

Vin !Vout( )4
eVin
2 +

R1
2Vin

2

Vin !Vout( )4
eVout
2 . 

To be explicit, the e ’s are replaced by the standard deviation, the standard error, or the 
confidence interval as appropriate. As a numerical example, assume R1 is a 20 kΩ ± 1% 
resistor and Vin and Vout are both measured by a fully-accurate 12-bit DAQ set to a ±5 V 
range. The smallest resolvable voltage in a DAQ is the range divided by the number of 
distinct values, which is calculated as 

10V 1
212

=
10V
4096

= 0.027V . 

The uncertainty in an individual voltage measurement is ±1/2 LSB (Least Significant 
Bit) or 

±0.027V
2

= ±0.013V . 

If Vin = 3.000 ± 0.013V  and Vout = 1.000 ± 0.013V , then the uncertainty in RT is 

eRT =
12

3!1( )2
200"2 +

20k"212

3!1( )4
0.0132 + 20k"

2 32

3!1( )4
0.0132 = 230"  

The calculated value of RT with the uncertainty is 

 
RT =

R1Vout
Vin !Vout

=
20k"i1.000
3.000 !1.000

= 10.00k" ± 0.23k" . 

Often a simplification of the error formula will aid in the calculation. In our example, 
we can substitute RT in the error formula: 

eRT =
RT
R1
eR1 +

!RT
Vin !Vout( ) eVin +

RT
Vin
Vout( )

Vin !Vout( ) eVout , 

which is somewhat easier to calculate and also aids in picking component values in a 
design to minimize the error. 
Also, the error terms (the things that get squared under the radical, not the individual 
residuals) that are 10% or less than the maximum error term can usually be dropped 
from the calculation because 

1002 +102 = 10000 +100 = 10100 = 100.5 ! 100  
A shortcut for the calculus-challenged who already have the formula entered in a 
spreadsheet or other calculation aid is to calculate actual differences in the answer due 
to the uncertainties in the factors and add the calculated differences in the RSS sense. 
Quantization Error 
We’ve neglected one important item in all of these calculations. We’ve assumed that the 
individual measurements are made to infinite precision (but because of noise, not to 
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infinite accuracy). Any actual measurement will have a quantization error. In other 
words, it will be measured to only a finite number of digits, and the last digit will have 
some uncertainty in it. All of the formulas we have derived assume that the true 
standard deviation of the measurement is significantly larger than the quantization 
error. If the standard deviation of the measurement is a factor of ten larger than the 
quantization error you can pretty much ignore quantization and use the formulas as is. 
However, if the true standard deviation and the quantization error are comparable, you 
have to include the quantization error or noise in your calculation. For the purposes of 
E80 we will use the following procedure: 
1. Calculate the quantization range, q. As explained above, for a fully-accurate 12-bit 
DAQ set to a ±5 V range, q is calculated as 

q =10V 1
212

= 10V
4096

= 0.027V . 

For a digital instrument, like a DMM, it is typically 1 least significant digit. If we assume 
that quantity being measured has an equally likely chance of having a value anywhere 
in a quantization range, the uncertainty in a given measurement is ±q / 2 , but for a 
series of measurements, the standard deviation is q / 12 . 

2. If S > 10q
12

, you can ignore quantization in your calculation. 

3. If q
12

< S < 10q
12

, you need to include quantization. Add q / 12  to your sample 

standard deviation in the RSS sense. 

Sused = S2 + q
2

12
. 

4. If S < q
12

, report your confidence interval as ±q / 2 , and plan to take a stochastic 

signals class to learn how to do the calculations properly. The Digital Signal Processing 
(DSP) world has a variety of techniques to deal with these issues, such as dithering, 
noise shaping, and oversampling. Yes, I know, the confidence interval in 4 is larger than 
in 3. It’s counterintuitive but correct. 


