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ABS" 

In this paper we present a framework for the design of 
experiments for sensor calibration. The theoretical ideas, 
which are based on the mathematical theory of optimal design 
of experiments, are demonstrated using a new software 
program, I-OPT, which was developed by Crary, Snow, and 
Hoo.' This program has been used to find I-optimal designs 
for both a silicon capacitive absolute-pressure sensor and a 
silicon piezoresistive pressure sensor. 

INTRODUCTION 

It fiequently occurs that the response of a sensor is of a 
known mathematical form. For example, the following is the 
previously reported closed-form compensation formula for a 
particular type of silicon capacitive absolute pressure 
(SCAP) sensor:* 

Compens. press. = B~+BIC+~~C~+B~T+B~C'+B~T~+B~CT , 

where C is the capacitance response of the sensor and Tis the 
temperature. When such a formula is known, a calibration 
can be effected by making a set of measurements of the 
variables that appear in the compensation formula (C and T 
in the example), along with corresponding measurements of 
a calibration standard (a pressure standard in the example). 
Linear regression techniques can then be applied to deter- 
mine best values for the coefficients, the fYs in the compen- 
sation formula, and the formula used subsequently to digitally 
compensate individual sensors both for nonlinearities and for 
cross-parameter effects on the sensor's response.2 

For reasons of economy, one is interested in accuracy and 
efficiency of calibration. This demands consideration of the 
tradeoffs between accuracy and calibration cost, which is 
strongly related to the number of calibration points used in 
the determination of the coefficients in the above formula. At 
present in the field of solid-state sensors, ad hoc procedures 
are used to determine the number of calibration points and 
the settings of the variables used in the calibration?' despite 
the fact that calibration is oRen one of the greatest single 
factors influencing sensor cost. 

Once the functional form of the compensation formula is 
known, questions arise as to the best means of carrying out 
the required calibration. If there are m terms in the com- 
pensation formula, are m distinct calibration points ad- 
equate, as long as one avoids ill-conditioning of the matrix 
that must be inverted? At what values of the variables should 
these points be taken? Perhaps many more than m calibra- 
tion points are required, in order to effect a sdciently 
accurate calibration. Or perhaps fewer than m are required, 
since there may be correlations in sensor characteristics from 
sensor to sensor. As an example of this last possibility, 

404 91CH2817-5/91/0000-0404$01.0 0 1991IEEE 

imagine that it had already been established that the con- 
stant term Bo in the SCAP compensation formula was the 
same for all sensors, within allowable error. Ifthis were the 
case, then there might be only m-1 independent fYs to be de- 
termined for each sensor. This paper draws upon the math- 
ematical theory of optimal design of experiments to begin to 
establish an appropriate framework for addressing questions 
and issues such as these. 

VARIANCE OF COMPENSATION 

In general there are two types of error present in the type of 
sensor compensation discussed here. There is an error in- 
troduced by the noise in the calibration procedure, which in 
what follows will be called measurement error. There is also 
error introduced by the inevitable failure of the compensation 
formula to model the sensor perfectly. This type of error will 
be called model error. Given their quite distinct origins, it is 
reasonable to assume the independence of the contributions 
of measurement and model error to the variance in the 
compensation. This can be expressed as follows: 

Variance of compensation = Measurement variance + 
Model variance. 

The statistics literature contains discussions of the distinc- 
tions between measurement variance and model variancePC 
A brief summary of three important cases follows: 

(1) In cases where modeling error dominates, the best 
experimental designs are usually ones that spread out, more 
or less evenly, the fixed number of calibration points. In these 
cases, the common ad hoc procedure of spacing calibration 
points evenly on arectangular grid in the domain of calibration' 
performs reasonably well. This is especially true of designs 
containing roughly two times as many, or more, calibration 
points as there are points in the model function, for in this 
case it is easy to define an appropriate rectangular grid. 

(2) When an adequate model exists, uniformly spaced 
designs are not optimal in general, and in many c w s  sig- 
nificant improvements can be obtained with other methods. 
This is accomplished, as described below, by defining an 
appropriate objective function, which provides a measure of 
compensation error over the range of use of the sensor, and 
then finding the design that minimizesthis objective function. 
Good global compensation formulas can be established for 
some types of sensors, using robust statistical methods such 
as stepwise regression: and such methods are becoming more 
widely available in statistical software packages. Thus it can 
be expected that model error can be decreased significantly by 
application of statistical methods. 

(3) If minimization of the number of calibration points is 
critical, and one seeks a design with the number of calibration 



points equal to or somewhat larger than the number of terms 
in the model function, then it is useful to have available a 
lower bound on some well defined measure of the compenaa- 
tion error, as well as a means of comparing potential designs 
with this bound, whether or not model variance is dominant. 
Ae an example, Reference4 describes a set of designs of 
experiments for calibration of a piezoresistive pressure sen- 
sor. The total error band ranges from 0.75%, when a 3-term 
compensation function and a 9-point design are used, to 
0.04%, when a 16-term compensation function and a 25-point 
design are used. It appears that model error dominates for the 
system with the larger error band. However, it is question- 
able whether a 9-point design is actually necessary for this 
low-end sensor. Examination of alternate calibration-design 

error in the parameter estimates, in the sense of minimizing 
the volume of the confidence regions for finding the actual 
parameters? D-optimality is €he most widely studied optimal 
design criterion. It is an interesting fact that the D-optimal 
design is not necessarily optimal for the purpose of generating 
a response model, such as the compensation formula we seek 
for sensors. In fact, a D-optimal design can be significantly 
sub-optimal for such tasks. 

A design that minimizes the worst-case 
expected error in prediction is called Goptimal." Such a de- 
sign would minimize the worst-case expected error in applying 
a given compensation formula, under the assumption that the 
functional form of the compensation formula is known. 

G-optimlity. 

- 
options may prove useful in this and similar instances. Z-optimality. When the goal of the calibration is to minimize 

the average variance in prediction over the range of use of the 
sensor, an appropriate objective function is the following: THEORY 

We begin with a review of basic linear-regression theory. In 
what follows, boldface denotes vectors and matrices, a su- 
perscript T denotes the matrix transpose operation, and a 
circumflex denotes expected value. The mathematical model 
in this case is linear in the coefficients, as in 

and this allows for a broad class of functions, includmg 
multivariate polynomials such as Y = ~ , + ~ ~ , + ~ ~ + ~ 4 x l x ,  or 
functionswithnon-linearterms such asY= ~ 1 + ~ & x , + ~ 3 x l ~ .  
The functions f,(x) are assumed to be linearly independent. A 
set of measurements represented by the column vector 
Y=Cy,,Y,, ... ,YJT is made at a set of specified values of the 
independent variables x with a set of random errors E = (E,,&,, 
... ,e,)T, the elements of which are assumed to have zero mean 
and constant variance d, 

where min indicates that the experimental design0 is sought 
that d z e s  theintegral over the set ofpointsxa Xat  which 
the sensor will be used. Weighting of different regions of the 
response is accomplished through the differential dp(x). This 
criterion is called I-optimality and has been detailed in the 
design-of-experiments literature.'O 

AVAILABLE SOJ?l%A.RE 

Finding optimal designs of experimentsis a computationally 
intensive task, as has been well established." Fortunately, 

+ 1 1. recent advances in speed of computation, coupled with new 
algorithms such as simulated annealing," are bringing the 
determination of optimal designswithin the range of commonly 
available capabilities, without undue expense.10*12 

E, 

This can be written as Y=~@+E, where X is called the design 
matrix. A key result from regression theory is that the best 
unbiased linear estimator of the coefficients is given by 
&(XTX>-1XTY.7 In the special case that the number of data 
points exactly equals the number of terms in the regression 
equation, m=n, the familiar rule (AB)-CB-'A-I can be applied, 
and the above equation becomes P=X-'Y. Furthermore, the 
variances in the estimates of the parameters are given by 
o'(~?)=o'(X~X)-~, and the variance in the fit function is 
o'(?(x))=ozfT(XTX>-lf, where f=(f,(x), f,(x), ... , f,(x))'. 

OBJECTIVE FUNCTIONS 

Several optimization functions are evident. Three of the 
most useful are the following: 

Software for finding optimal designs of experiments was 
reviewed by Nacht~heim'~. Software for finding D-optimal 
designs on finte grids have become widely available, Since 
they were included in popular statistical-software systems, 
such as RS/Discover." Meyer and Nachtsheim have dis- 
cussed software for finding D-optimal designs on continuous 
spaces." Welch's ACED softwar@ finds designs approxi- 
mating I- and Goptimal designs, in which potential design 
points are restricted to a fairly coarse grid. However, virtu- 
ally nothing exists for determining I- or Goptimal designs on 
continuous spaces, which are the relevant criteria for sensor 
calibration, with the exception of a series of programs by 
Haines" that can be used for two small classes of functions. 

I-OFT 

D-optimality. Because the variances in the estimates of the 
parameters are proportional to the matrix (XTX)-', the de- 
terminant of this matrix provides a measure of the overall 
uncertainty of the parameter estimates. A design that mini- 
mizes the determinant of (XTX)-l is called D-optimal. It has 
been shown that this criterion is equivalent to minimizing the 

In the absence of adequate software, Crary, Snow, and Hoo' 
have developed a FORTRAN program called I-OPT that finds 
I-optimal designs of experiments for arbitrary multivariate 
polynomial models. The program is essentially an extension 
of earlier work by Haines," using a modified Fedorov proce- 
dure,8 as well as simulated annealing for functional minimi- 
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zation, in order to find the optimal, or at least a near-optimal, 
design. They have extended the earlier work of Crary and 
Snow’‘ by adding an efficient downhill-search algorithm, 
essentially their own variant of a modified-Powell search, to 
speed convergence once the initial annealing search has led to 
the basin in which the optimal solution lies, with a high 
degree of confidence. 

ExAMpuEsl 

Figure 1 shows the designs found with I-OPT for the com- 
pensation formula given above for a variety of allowed num- 
bers, N, of distinct calibration points measured with equal 
accuracy. I-OPT has the following additional features that 
are useful in the context of “ o r  calibration: (1) the domain 
of calibration may M e r  from the domain in which the 
compensation formula must be accurate, as in Figure 2a; (2) 
weights may be applied to the domain in which the formula is 
applied, as in Figure 2b; (3) the calibration points may have 
Merent  accuracies associated with the measurement of the 
relevant variables; and (4) the cost of a calibration point may 
vary over the region of calibration, thus allowing for optimi- 
zation based on rather general cost functionals, rather than 
on accuracy alone. 

I I I + mttt 
N=7 N=9 

t 

NE1 2 N-14 

Figure 1. Several optimal designs of calibration experiments 
for the seven-term silicon capacitive absolute-pressure sen- 
sor response are shown, with numbers of calibration points 
ranging from N=7 to 14. The variables C and T have been 
transformed to reduced variables C* and T* 80 that their 
ranges are the closed interval I-1,lI. The objective function 
being minimized is the integrated expected squared error in 
the compensation formula (I-optimality condition), assuming 
that all the calibration pointa are made with equal accuracy. 
For the runs with N 4 2  and 14 points, the two filled circles 
shown nearest the center of the domain are actually double 
points, indicating that redundant measurements should be 
made at each of these points. 

Figure3 shows a 15-point design, found using an early 
version of I-OPT, based on the following 1 5 4 ”  polynomial 
compensation formula for a piezoresistive sensor that was 
presented previously:’ 

A comparison of designs based on different criteria is in- 
structive. Figure 4 shows the value of the integrated variance 
as a function of the number of calibration points, based on the 
7-term WAF’ compensation function, for Werent criteria. 
The points connected by line segments represent designs 
found with I-OPT. Other criteria have higher values of the 
objective function. For N37 and N d 2 ,  D-optimal designs 
that were found using Meyer and Nachtsheim’s simulated 
annealing program’’ are seen to be significantly sub-optimal 

N=7 N-7 

 figure^ 2. (a) The domain of calibration can be different from 
the domain where the sensor will be used. Shown here is the 
minimum-point (N=7) design when the region of use will be 
C*=[-YZ,Y23 and T*=[-Y3,2/31. As compared to the N=7 
design in Figure 1, this design places more of the calibration 
points near the center of the domain. (b) The region ofuse can 
also be weighted. In the example shown here, the center ofthe 
domain of use has a relative weight of five compared to the 
periphery of the domain, meaning that the relative cost of 
variance in the compensation formula in the center is being 
taken as five times the cost at the periphery. For this 
minimum-point design the relative weight is graded from 
center to periphery, as shown. 

Figure 3. The 15-point I-optimal design for the 1 5 4 ”  
polynomial model of a silicon piezoresistive pressure sensor. 
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figure 4. A comparison of designs based on various criteria. 
The ordinate value is the integrated variance normalized to 
give the average variance over the entire domain of calibra- 
tion. 

in the I-optimality criterion. The integrated variances of 
designs found with ACED’S AV criterion” using grids of 5x5, 
11x11, and 21x21 points are also shown. Finer meshes are 
computationally expensive in ACED and are not recom- 
mended.” Simulated annealing, which is used in I-OPT, 
overcomes this computational hurdle. Finally, uniform de- 
signs based on a rectangular grid are shown for N=4x3=12 
and N=6x5=30, and these are seen to be close to optimal. 

SUMNlARY 

Reiterating the main points: a variety of methods is avail- 
able for finding designs of experiments, I-OPT establishes one 
possible baseline for comparison of designs, I-optimal designs 
are particularly attractive if the model variance is relatively 
small or ifit is desired to keep the number of experiments to 
a minimum, although in this last case, comparisons should be 
made with designs based on other criteria. 
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