
Auntie Spark’s Guide to First-Order Time Constant Measurement 
      
       Fall 2014 
 
A first-order system can be characterized by its time constant 𝜏. Simple RC or RL 
circuits are examples of first-order systems. Thermometers and thermocouples are often 
modeled as first-order systems, as are well-stirred mixing tanks. Such systems are 
characterized experimentally by measuring the time constant, 𝜏. Because all first-order 
systems exhibit the same response to a given input, a first-order RC circuit can be used 
to demonstrate the behavior of all first-order systems. With a proper choice of R and C, 
this circuit can be used to study the behavior of first-order mechanical or thermal 
systems that are much more difficult to build and characterize in the lab. Therefore, 
we’ll illustrate several methods to measure the time constant, τ, of an RC circuit. 
 
RC circuit 
 
Let’s use an RC series circuit. The voltage across the capacitor Vc(t) is the output signal. 

  
Fig.1 RC circuit  

 
Construct the RC circuit  

• Choose the proper R and C for the first-order system of interests. 
• Connect the circuit on a breadboard 
• A function generator will be used to generate the input signal, and the output 

voltage will be observed with an oscilloscope. 
• If R and C are known or measured prior to the circuit measurement, the expected 

time constant can be calculated as τ = RC. The measurement can be used to 
validate the calculated result. In addition, if the component values are not known, 
measuring the time constant allows for calculation of the product of R and C. 

 
There are two main methods: time-domain method based on the step response and 
frequency-domain method based on the frequency response.  
 
Step response of RC circuit-time domain method: 
 
One way to extract the time constant τ is by measuring the step response of the RC 
circuit in the time domain. Assume zero initial condition, the step response is given by 
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𝑉! 𝑡 = 𝑉!"(1− 𝑒
!!!), where Vin is the input step voltage. In particular, at 𝑡 = 𝜏,   𝑉! 𝜏 =

𝑉!" 1− 𝑒!! = 0.632𝑉!", i.e. the output reaches 63.2% of the final steady state value, 𝑉!". 
For example, if the capacitor voltage response is given by Fig. 2 for a step input of 
𝑉!"=5V, we can examine the time at which 𝑉!  reaches 63.2%×5 = 3.16𝑉 . This time 
should correspond to 𝜏 = 0.1  sec from the result. Since the functional relationship 
between 𝑉! 𝑡   and t is given, measuring the voltage at any time should also allow you to 
extract/calculate the time constant τ. In practice, measurements of 𝑉! 𝑡  outside the 
range of 10% of 𝑉!" to 90% of 𝑉!" introduce unacceptable errors into the calculated 𝜏. It is 
always good practice to take multiple measurements to minimize measurement error. 
Alternatively least-square curving fitting method can be used to find τ using all of the 
V-vs-t data (See Auntie Spark’s Guide to using LabVIEW to measure first-order time 
constants for an example). In addition, at the initial time t = 0, the initial slope of the V-
vs-t data,  !!!

!"
0 = !!"

!
 . Either the slope can be measured and the time constant, τ, 

calculated, or the initial-slope line can be extended to the intersection with the steady-
state voltage and the time constant determined by the intersection. In the figure below, 
the slope method leads to the same time constant, 𝜏 = 0.1  sec.  
 

 
Fig.2 Step response when Vin=5V 

 
Experimentally, this measurement requires a function generator for the input voltage 
and an oscilloscope or DAQ and computer to display the output voltage versus time. A 
square wave with a period greater than 10 time constants suffices for the step input. 
Visually, choose a frequency that allows for a complete step response. If the peak-to-
peak amplitude of the square wave is given as A, then either the rising edge 𝑉! 𝑡 =

− !
!
+ 𝐴 1− 𝑒!

!
! , or the falling edge 𝑉! 𝑡 = !

!
+ 𝐴𝑒!

!
!, can be used to measure the time 

constant. Fig.3 is an experimental example that shows the typical response to a square 
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wave with A = 5. We choose a period of T = 1 second. On the rising edge, the time at 
which !!(!!.!)

!.!!(!!.!)
= 63.2% → 𝑌 = 0.66 corresponds to the time constant τ = 0.1 sec. On the 

falling edge, similarly, the time at which !!(!.!)
!.!!(!!.!)

= 𝑒!! = 36.8% → 𝑌 = −0.66 
corresponds to time constant τ = 1.1 – 1 = 0.1 sec. 
 

 
Fig.3 RC circuit response to a square wave voltage input, A=5V 

 
 
Frequency response of RC circuit-frequency domain method: 
 
An alternative method of extracting the time constant, τ, is measuring the frequency 
response function (FRF) of the circuit. A Bode plot is a convenient way to plot 
magnitude and phase of the FRF as a function of frequency ω (rad/s) or f (Hz). A typical 
first-order RC circuit’s Bode plot is given in Figure 4. 
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In this approach a similar experimental setup is required; however, the frequency of the 
input or function generator is adjusted to obtain the 3dB corner or cutoff frequency of 
the system. Because the 3dB corner frequency is related to τ by  𝜔!!" =

!
!
 or   𝑓!!" =

!
!!"

. 
In the RC circuit shown, the 3dB frequency corresponds to when the capacitor voltage 
drops down to !

!
= 0.707  of the low frequency values. In addition, phase 

measurements can be used to identify the corner frequency too. If comparing input 
voltage and output voltage, the frequency at which the phase difference reaches exactly 
− !

!
 corresponds to 3dB corner frequency. 

 
• Note that a function generator displays frequency in Hz instead of rad/s.  
• If a full bode plot is to be constructed using such measurements, make sure to 

plot  𝐿𝑚 = 20𝑙𝑜𝑔!"
!!"#
!!"

𝑑𝐵  for the magnitude in dB, and ω (or f) on a logarithm 
scale. 

• The cursor option on the scope can be very handy when measuring when the 
amplitude ratio has dropped (or increased) to 0.707 or for measuring the phase 
difference between two signals. 
 

The frequency-response-function method is easy to implement for electrical systems in 
the lab, but is more challenging for mechanical or thermal systems because the 
excitation frequency is much more difficult to control.  
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