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Concepts in Atmospheric Science

Atmospheric science across the disciplines
The basics

Why atmospheric measurements?

Platforms for atmospheric measurements
What you might consider for your rocket
Where did the air come from? HYSPLIT models



Atmospheric Science across the disciplines
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Planetary boundary layer vs the free
troposphere

Depiction of vanous surfaces and PBL, processes

Top of the planetary boundary layer

Image credit: esrl.noaa.gov



What’s going on in the troposphere?

Nearly all

weather (clouds, rain, tornados, hurricanes, snow)
anthropogenic (human-caused) pollution

transport of anthropogenic and natural chemicals
(think dust storms, wildfires)

warfare related emissions (weaponized aerosols)

molecules relevant to climate change (because most
of the mass is here).



Beijing smog problem — exacerbated
by stagnant air and shallow boundary
layer

* http://www.cnn.com/2013/01/14/world/asia/
china-smog-blanket




1973: Molinais a
Postdoc with
Roland,

hypothesized tha” N4
CFCs could destroy

0,

The Ozone Hole Story

1983-1984: The Total 1986: Mission to

Ozone Monitoring group

Antarctica in local

at NASA notices an

increase in “Low Value” spring (August)
flags in October data organized by S.

Solomon (NOAA)

1978: Bans
on aerosol
CFCs but use
increased in
general, due
to skeptics/
industry

1984: Joseph
Farmer and
colleagues at
British Antarctic
Survey measure O,
with a Dobson
Spectrophotomet
er and discovered
that it was 35%
lower than 1960
levels

1985: Farmer and NASA
publicize results and
the term “ozone hole”
enters existence after
satellite measurements
reveal the shape and
extent of the depletion.




Outliers: How NASA “missed” the
ozonhe hole

“Our for ozone that was lower than
180 DU, a value lower than had ever been reliably

reported prior to 1983.

In 1984, before publication of the Farman paper, we
in "from October

of 1983. We had decided that the values were real and
submitted a paper to the conference the following
summer when Joe's paper came out, showing the
same thing.

As the first one in print, he gets full credit for discovery of
the ozone hole. It makes a great story to talk about
how NASA "missed" the ozone hole, but it isn't quite
true.”



Video Credit: NASA/Goddard Visua | VAS d

Space Flight Center
Scientific Visualization Studio
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Practical uses for atmospheric

measurements
Air quality control and monitoring (including
airborne pathogens)

Better prediction of tornadoes and hurricanes
(improve early warning)

Changes in patterns (rain, storm tracks) due to
changing climate

Monitoring greenhouse gases and short-lived
climate forcers.

Cross border pollution issues



Introduction to Atmospheric Aerosols:
Particle Sources
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Introduction to Atmospheric Aerosols:
Organic Components are Substantial

Submicron particle composition from an aerosol mass spectrometer:
organic and inorganic (sulfate, nitrate, and ammonium) components
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Where are measurements made? And

Jason-2 Satallte

Courteay NASA
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Importance of collaboration

Calnex Field Study




VAMOS Ocean-Cloud-Atmosphere Land-

Study Regional Experiment (VOCALS-
REXx)

-
The Southeast Pacific Climate System
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Calcareous Phytoplankton Fragments:
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our changing planet?
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NASA’s A-Train

* Crosses the equator around
1:30 pm daily.

 Together they measure
water vapor, temperature,
rainfall, clouds, aerosols,
greenhouse gases and more.

PN , S, :
Questions only satellites can answer
What is the overall affect of aerosols and clouds on climate?

How much carbon is absorbed by forests?

How will the monsoon cycle react to a warming world?

To what extent will a changing climate change the size and strength of
hurricanes?

And what feedback cycles will encourage or discourage climate change?




Particle concentration by satellite

e AOD is aerosol
optical depth
e Parameterized

by ground
easurements
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What can satellite spectrophotometry
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NO, is a tracer of fossil fuel
combustion-related
pollution.
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A great place to know about: NCAR

e Models




What might rockets add?

Climate model “ground truthing”
Repeatable, local measurements

Very high altitude studies (not yours), most useful
above altitude for balloons (40 km) and below
satellites (recall collaboration!).

Lower cost than a fully instrumented aircraft
Can be launched from remote locations (ships etc).

Vertical profiles help meteorologists understand
weather

Complement ground based measurements
Can be launched at short notice of phenomena



What you might find interesting to
measure by rocket

* Temperature, pressure, light intensity, relative
humidity, and average wind speed.

* Trace gas (e.g. CO) concentration and
particulate concentration.

* Could you collect a sample of particulates? |
have small discs that could be used to impact
particles on during flight.



What’s cool about CO?

8

bustion)
‘pollutants

* Major sol
and phot

60 day life °-

* About 10(€
(compareg ,_

=

A hj?# b
)

,4

/

'-|
A

g

\
)

o
1
|

_J

i

Sources

May 10

Rk
!

May 17
over ocean

| e,
. 5
w ' "
‘,'.. n. . f )
1
o M

Chendtmaet iy |

fhah - Jfr {WTM‘MJ}»W
e
‘n

|
150 200 250 300 350

CO, ppbv




Vertical Profiles are telling
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Cloud layers in vertical profiles
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NOAA S HYSPLIT IVIodeI
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NOAA’s HYSPLIT Model

Instructions:

1. Go to http://ready.arl.noaa.gov/HYSPLIT traj.php

2. Select Compute archive trajectories

3. Leave “Number of locations” at 1, and use the normal type

4. Select the EDAS 40km 2004-present meteorological data set

5. Select your location one of three ways (today | picked Lat/Lon for

on

Claremont, 34.0967°N and 117.7189°W, use negative for west))

Depending on how far back you want your trajectory to start, pick the
date (I’'m using ‘currentl15days’ here).

Select “backward” as the direction

Pick the time your rocket was sampling, in UTC time.

Select the run time (how far back in time you want to model).
Pick your desired altitude

Pick your plot style and features and output data type (Google Earth is
possible)

Request trajectory, and wait!



