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∆U and ∆H as Functions of
Temperature and Pressure

E82 – What to do if your temperature or pressure isn’t constant

1
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Remember: ∆ means final – initial or out – in.

State Variable: Value depends only on location or “state.” Does no 
depend on path.

Common State Variables: H, T, U, V, m, etc.

Path Variable: Value depends only on path. Does not depend on 
location.

Common Path Variables: Q, W.
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Example: Calculate ∆H for one mole of ice at –5°C and 1 atm 
being changed to steam at 300°C and 5 bar by two different paths.

Path 1 :

1. Ice at –5°C and 1 atm to ice at 0°C and 1 atm
2. Ice at 0°C and 1 atm to water at 0°C and 1 atm
3. Water at 0°C and 1 atm to water at 100°C and 1 atm
4. Water at 100°C and 1 atm to steam at 100°C and 1 atm
5. Steam at 100°C and 1 atm to steam at 300°C and 1 bar
6. Steam at 300°C and 1 bar to steam at 300°C and 5 bar

ΔĤ = ΔĤ
i

i=1

6

∑For the process
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Path 2:

1. Ice at –5°C and 1 atm to ice at 0.01°C and 0.00611 bar
2. Ice at 0.01°C and 0.00611 bar to water at 0.01°C and 0.00611 bar
3. Water at 0.01°C and 0.00611 bar to steam at 300°C & 5 bar

ΔĤ = ΔĤ
i

i=1

3

∑

Are the two equal?

Why or why not?

For the process
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For many chemical engineering processes, work, kinetic energy, 
and potential energy can be ignored. In such cases the 1st law 
reduces to:

Q = ΔU     (Closed System)

For a constant volume system we define:

Cv is the heat capacity at constant volume.

!Q = Δ !H     (Open System)

C
v
(T ) ≡ lim

ΔT→0

ΔÛ
ΔT

= dÛ
dT
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Rearranging

dÛ =C
v
(T )dT

and integrating

If Cv does not depend on T, then:

ΔÛ = C
v
(T )dT

T1

T2

∫

ΔÛ =C
v
ΔT

What if the volume changes?
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For a constant pressure system we define:

Cp is the heat capacity at constant pressure. As before

C
p
(T ) ≡ lim

ΔT→0

ΔĤ
ΔT

= dĤ
dT

dĤ =C
p
(T )dT

and integrating

If Cp does not depend on T, then:

ΔĤ = C
p
(T )dT

T1

T2

∫

ΔĤ =C
p
ΔT
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What if the pressure changes?

Liquids and Solids:

ΔĤ = C
p
(T )dT

T1

T2

∫

ΔĤ = C
p
(T )dT

T1

T2

∫ + V̂ dP
P1

P2

∫ ≈ C
p
(T )dT

T1

T2

∫ + V̂ΔP

Ideal Gas:

dĤ =C
p
dT + V̂ −T ∂V̂

∂T

⎛

⎝⎜
⎞

⎠⎟
P

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dP

No pressure dependence

In general:
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How do Cp and Cv compare?

Liquids and Solids: Cv ≈ Cp

Ideal Gas:                Cp = Cv + R
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How do you evaluate heat capacities?
• Tables
• Correlations

o From Felder (Table B.2 in appendix B)

or

• Estimating formulas

C
p
= a + bT + cT 2 + dT 3

C
p
= a + bT + cT −2

10
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If you know the initial and final temperatures, it is often 
convenient to use a mean heat capacity.

Evaluation (Form 1):

which evaluates to
C
p
=

a + bT + cT 2 + dT 3( )dT
T1

T2∫
T
2
−T

1

C
p
=
Ĥ
2
− Ĥ

1

T
2
−T

1

C
p
= a + b

2
T
1
+T

2( )+ c
3
T
1
2 +T

1
T
2
+T

2
2( )+ d

4
T
1
+T

2( ) T12 +T22( )⎡
⎣

⎤
⎦

Definition:
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Evaluation (Form 2):

which evaluates to

C
p
= a + b

2
T
1
+T

2( )+ c
T
1
T
2

C
p
=

a + bT + cT −2( )dT
T1

T2∫
T
2
−T

1

If you have tabulated heat capacities the integration can
be done numerically.
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It should be obvious that

but things in thermodynamics rarely are.

ΔĤ =C
p
ΔT

If you have not already done so, you should also do the symbolic 
integration of the correlations for

ΔĤ = C
p
(T )dT

T1

T2

∫ = a + bT + cT 2 + dT 3( )dT
T1

T2∫   or = a + bT + cT −2( )dT
T1

T2∫
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Example: Calculate ∆H for 10 moles of N2 going from 100°C to 
800°C. Compare the results for an approximate heat capacity, the 
mean heat capacity formula, integrating the heat capacity, and 
using Table B.8 in FRB.

Approximate heat capacity for a diatomic gas.

C
p
= 7

2
R = 3.5 i8.314

J
mol K

= 29.10
J

mol K
= 0.0291

kJ
mol K

ΔĤ =C
p
ΔT = 0.0291 800−100( ) = 20.37 kJ/mol

ΔH = nΔĤ =10 i20.37 kJ/mol = 203.7 kJ

14
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Mean heat capacity from Table B.2 in FRB

ΔĤ =C
p
ΔT = 0.03096 800−100( ) = 21.67 kJ/mol

ΔH = nΔĤ =10 i21.67 kJ/mol = 216.7 kJ

C
p
= a + b

2
T
1
+T

2( )+ c
3
T
1
2 +T

1
T
2
+T

2
2( )+ d

4
T
1
+T

2( ) T12 +T22( )⎡
⎣

⎤
⎦

a = 29.00×10−3, b = 0.2199×10−5, c = 0.5723×10−8, d = −2.871×10−12

C
p
= 30.96

J
mol K

= 0.03096
kJ

mol K
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Integrating heat capacity from Table B.2 in FRB

ΔĤ = 21.67 kJ/mol

ΔH = nΔĤ =10 i21.67 kJ/mol = 216.7 kJ

a = 29.00×10−3, b = 0.2199×10−5, c = 0.5723×10−8, d = −2.871×10−12

ΔĤ = C
p
(T )dT

T1

T2

∫ = a + bT + cT 2 + dT 3( )dT
T1

T2∫

16
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Calculating from enthalpies from Table B.8 in FRB

ΔĤ = Ĥ
800

− Ĥ
100

= 23.86− 2.19 = 21.67 kJ/mol

ΔH = nΔĤ =10 i21.67 kJ/mol = 216.7 kJ

@100 °C, Ĥ = 2.19 kJ/mol

@800 °C, Ĥ = 23.86 kJ/mol
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R 8.3145J/mol K Comparison Cp ∆Hhat ∆H % diff
n 10g-mol Approx Cp 0.02910 20.37 203.7 -6.01%
T1 100°C Mean Cp 0.03096 21.67 216.7 0.00%
T2 800°C Int. Cp N/A 21.67 216.7 0.00%

Table B.8 N/A 21.67 216.7 -0.02%
7/2 R 0.02910kJ/mol K
∆Hhat 20.37kJ/mol
∆H 203.7kJ

Cpbar 0.03096kJ/mol °C a b c d
∆Hhat 21.67kJ/mol 2.90E-02 2.20E-06 5.72E-09 -2.87E-12
∆H 216.7kJ

∆Hhat 21.67kJ/mol
∆H 216.7kJ

Hhat (kJ/mol)
100 °C 2.19
800 °C 23.86
∆Hhat 21.67kJ/mol
∆H 216.7kJ
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Valuable Numbers to Know
Approximate Heat Capacities

C
p

Btu
lb

m
°F

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 or 

cal
g °C
⎡

⎣
⎢

⎤

⎦
⎥

Water Values

Gas Type

Monatomic

Diatomic

C
pC

v

3
2
R

5
2
R

5
2
R

7
2
R

Steam ≈ 0.5
Water ≈1.0

Ice ≈ 0.5

ΔĤ
v
≈1000 Btu

lb
m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ΔĤ
m
≈150 Btu

lb
m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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