1-D Analytical Model

Assume that the thrust is constant from ¢ =0to ¢ = t, ata value of T. The initial
velocity 1s v, =0. Then from ¢ = t tot=t, the thrust is constant at a value of T,
Finally, from ¢ = t,to t=t, (when the parachute deploys), the thrust is constant at
T, =0. For the drag force we assume a constant drag coefficient, C,- The drag force

1s then
1 2
F, =§CDAPpU : (1.1)
The force balance on the rocket is
1
ma=T. —ECDAppv|v|—mg (1.2)

Where x is 1, 2, or 0 and the absolute value sign takes care of whether the rocket is
rising or falling. Division through by the mass gives

azﬂ—g—lCDApﬁvM (1.3)
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To make computations easier, we’'ll calculate the velocity when the acceleration is 0.
With no thrust, the velocity is the terminal velocity, v,. For the thrust case, we'll

call it the maximum velocity, p__ . The terminal velocity 1s

o = |28 (1.4)
pCHLA,

And the maximum velocity is

v = 2(T, ~mg) (1.5)
pCLA,

The acceleration can then be written as
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Written in differential equation form it becomes
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Which is separable to
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However, if U, 1s greater than U e then the integral becomes

U, coth™ A b(t, —1,)

Umax Uy

v, =, coth {L (t/ ~1,)+coth™ U—O}

v (Y]

max max

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

The physical difference is that if vy, is less than y__, the rocket will accelerate, but

if v, 1s greater than U the rocket will decelerate.

v, and ¢, are initial conditions, but v . 1s the velocity at ¢ o which is an arbitrary

time within the specified interval (we could have used dummy variables and

integrated to ¢). We can therefore write for y, <v__,

dx _
dt
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v, tanh {L (t—t,)+tanh™ U—O}

Which is again separable into
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dx =v,_, tanh {L(t —t,)+tanh™ U—O}dt (1.15)
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Integrating from x, to x and from ¢, to ¢ yields:
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(1.16)
The equivalent process for U, >V, 18
dx b v
— =v___coth| —(¢, —t,)+coth™ — (1.17)
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Which is again separable into
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dx =v,_,_coth {L(t}( -1, ) +coth™ U—O} dt (1.18)

Integrating from x, to x and from ¢, to ¢ yields:
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During the coasting decent from apogee, Equations (1.11) and (1.16) apply with U
being replaced with v, and b being replaced by —g.

The time from apogee to impact/landing is given by solving equation 1.16 from
apogee to the ground for the time. With the relevant substitutions, we are solving

, _
0-x, = U_t{ln cosh [g(t —1 ) +tanh™ Qﬂ —In {cosh (tanh1 EH}
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for ¢ —¢, the time from apogee to impact/landing. We used g instead of —g inside
0 8

(1.20)

the cosh function because it 1s an even function, and we want the time to be
positive. Solving, we get

t—t, =Y cosh™ exp(g_og()] : (1.21)
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For large values of %, the exponential may overflow, and not permit calculation of
2
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the time. If so, you may need to look up the inverse hyperbolic cosine in terms of

natural log and use an approximate expression. In that case, for g_ago >100, we get
Ut
X, U
t—t,=—2+-LIln2. (1.22)
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And then using the time in Equation 1.11 to solve for the impact/landing velocity,

we get
v, =1, tanh{ (tf -, ) +tanh™ 9} =, tanh{ % cosh™ {exp(é’_ﬁoﬂ}
v v v, 8 v
t t t : (1.23)
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which asymptotically approaches v,.
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Going back to our derivation, during the coasting ascent to apogee, Equation (1.6)
becomes
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Which separates and integrates to
tanflz_tanflv_oz—g(t_to) (125)
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v=v,tan ﬁ(t—t0)+tan‘lv—° - (1.26)
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To get the position, separate and integrate Equation (1.26).
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Apogee, and the time to apogee is found by setting the velocity to 0 in Equation
(1.26), solving for the time to apogee and substituting into Equation (1.27).



0=y, tan{ﬁ(t&Ipogee ~t,)+tan™ &} : (1.28)
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When implementing these equations in code, or when solving by hand, remember
that they are piecewise function and that the final conditions for one segment, ¢

(1.31)

f’ v/"
and x ;> are the initial conditions for the next segment, ¢, v,, and x,



