
JOURNAL OF AIRCRAFT
Vol. 38, No. 4, July–August 2001

Review of Attitude Representations Used for Aircraft Kinematics
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A detailed survey is presented of the literature on attitude representation dating from the early work of Euler and
Hamilton to recent publications in éelds such as navigation and control. The scope is limited to the development
of the aircraft kinematic transformation equations in terms of four different attitude representations, including
the well-known Euler angles, the Euler-axis rotation parameters, the direction cosines, and the Euler–Rodrigues
quaternion.The emphasis is directed at the applicationof the quaternionformulationto aircraft kinematics.Results
are presented that reinforce observations that the quaternion formulation, typically implemented to eliminate
singularities associated with the Euler angle formulation, is far superior to the other commonly used formulations
based on computational eféciency alone. A development of quaternion constraints necessary to independently
constrain roll, pitch, yaw, bank angle, elevation angle, and/or azimuth angle is presented. For veriécation of
simulation codes, a general closed-form solution to the quaternion formulation, for the case of constant rotation, is
also presented. Additionally, a discussion is provided of numerical integration methods and numerical errors for
the quaternion formulation. This discussion is especially important for simulations that may still utilize a common
error reduction scheme originally developed for analog computers.

Nomenclature
A = arbitrary quaternion
B = arbitrary quaternion
[C] = direction-cosinematrix
E = Euler axis vector
Ex = x component of Euler axis vector
Ey = y component of Euler axis vector
Ez = z component of Euler axis vector
e = Euler–Rodrigues quaternion
er = renormalized Euler–Rodrigues quaternion
ex = x component of Euler–Rodrigues quaternion
ey = y component of Euler–Rodrigues quaternion
ez = z component of Euler–Rodrigues quaternion
e0 = scalar component of Euler–Rodrigues quaternion
Pe = time derivative of Euler–Rodrigues quaternion
e¤ = conjugate of Euler–Rodrigues quaternion
g = acceleration of gravity
[I] = identity matrix
ix = unit vector in the x direction, Earth-éxed coordinates
ixb = unit vector in the xb direction, body-éxed coordinates
iy = unit vector in the y direction, Earth-éxed coordinates
iyb = unit vector in the yb direction, body-éxed coordinates
iz = unit vector in the z direction, Earth-éxed coordinates
izb = unit vector in the zb direction, body-éxed coordinates
k = gain coefécient
[M] = matrix in the quaternion rate equation
p = rolling rate, body-éxed coordinates
Q = arbitrary quaternion
Qx = x component of arbitrary quaternion
Q y = y component of arbitrary quaternion
Qz = z component of arbitrary quaternion
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Q0 = scalar component of arbitrary quaternion
Q¤ = conjugate of arbitrary quaternion
q = pitching rate, body-éxed coordinates
r = yawing rate, body-éxed coordinates
T = temporary quaternion
Tx = x component of temporary quaternion
Ty = y component of temporary quaternion
Tz = z component of temporary quaternion
T0 = scalar component of temporary quaternion
t = time
u = axial or xb component of airspeed, body-éxed

coordinates
V = airspeed vector
Vw = wind vector
Vwx = x component of wind, Earth-éxed coordinates
Vwy = y component of wind, Earth-éxed coordinates
Vwz = z component of wind, Earth-éxed coordinates
v = sideslip or yb component of airspeed, body-éxed

coordinates
v = arbitrary vector
vx = x component of arbitrary vector, inertial coordinates
vxb = x component of arbitrary vector, body-éxed coordinates
vy = y component of arbitrary vector, inertial coordinates
vyb = y component of arbitrary vector, body-éxed coordinates
vz = z component of arbitrary vector, inertial coordinates
vzb = z component of arbitrary vector, body-éxed coordinates
w = normal or zb component of airspeed, body-éxed

coordinates
x = x coordinate, inertial coordinates
xb = x coordinate, body-éxed coordinates
y = y coordinate, inertial coordinates
yb = y coordinate, body-éxed coordinates
z = z coordinate, inertial coordinates
zb = z coordinate, body-éxed coordinates
±t = time step
" = orthogonalityerror
2 = total rotation angle
µ = Euler elevation angle or pitch attitude
Á = Euler bank angle or roll attitude
’ = general Euler angle
Ã = Euler azimuth angle or heading
! = angular velocity vector
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Introduction

T HE numerical simulation of motion with six degrees of free-
dom (six DOF) is important in many areas of modern tech-

nology, ranging from computer animated élm making to the de-
velopment of aircraft and spacecraft èight simulators. For these
varied applications, there is a need to describe both position and
orientation in either an inertial coordinate system or a noninertial
coordinate system. With speciéc application to aircraft èight, one
common method for describing attitude is through the use of Euler
angles. The Euler angle formulation contains a singularity known
as gimbal lock. As a result, alternative methods for relating non-
inertial coordinates to inertial coordinates have been developed.
One such formulation employs quaternion algebra to remove the
singularity.

Several mechanics textbooks introduce quaternions as part of
the treatment of generalized rigid-body motion.1;2 Quaternions are
applied to a diverse set of rigid-body motion problems ranging
from simulations of nanotechnology,3 underwater tethers,4 vehi-
cle navigation,5;6 robotics,7¡11 molecular dynamics,12 and electro-
magnetic éelds13 to computer visualization and animation.14¡16 In
the early 1990s, Chou17 published a review article on quaternion
kinematics for the robotics community. Also published in the early
1990s, Shuster18 provides a review of vector/matrix algebra and
attitude representations used by the spacecraft community includ-
ing Euler angles, direction cosines, axis-azimuth representations,
Euler–Rodrigues symmetric parameters, Rodrigues or Gibbs pa-
rameters, and Cayley–Klein parameters.

What is lacking is a current, thorough review of attitude kine-
matics directed primarily toward the aircraft simulation and mod-
eling community. To support this point of view, a survey of re-
cent and classic introductoryatmosphericèight mechanic textbooks
shows no19¡31 or very limited32;33 discussion of quaternions, de-
spite the wide use of the quaternion formulation in simulating air-
craft motion.34;35 The need for a review of attitude kinematics for
the aircraft community is underscored by the use of quaternion in-
tegration schemes employed on today’s digital computers, which
were developed originally for analog simulations in the 1950s and
early 1960s. An early application of quaternions to analog com-
puter simulation of aircraft and missile motion was developed by
Robinson36;37 and popularized by Mitchell and Rogers.38 Because
these analog computer simulations were inherently érst order, the
raw quaternion formulation did not work well. When such sim-
ulations were run, the magnitude of the quaternion would grow
quite rapidly with time. Because the formulation requires the mag-
nitude of the quaternion to remain unity, these large errors would
render the simulations almost useless. To remedy this problem,
techniques were developed to reduce this computer error. One er-
ror reduction scheme, due to Corbett and Wright,39 worked quite
well when used with the analog computers of that era. Its use is
no longer necessary with the higher-order integration techniques
available on today’s digital computers. However, the Corbett–
Wright correction is still presented as necessary in the development
of quaternion kinematics in recently published aeronautics text-
books.33;40

In simulating six-DOF aircraft motion, Newton’s second law is
most convenientlywritten in terms of a noninertial coordinate sys-
tem éxed to the moving aircraft. Position and orientation are most
conveniently described in terms of an Earth-éxed coordinate sys-
tem, which for all practical purposes can be considered to be an
inertial coordinate system. Here the inertial or Earth-éxed coor-
dinate system will be designated x , y, and z and the noninertial
or body-éxed coordinate system will be designated xb , yb , and
zb . The orientations of these two coordinate systems relative to
the Earth and the aircraft are shown in Fig. 1. The position of
the aircraft is speciéed by the location of the origin of the non-
inertial frame with respect to the inertial frame, and the orienta-
tion of the aircraft is speciéed in terms of the orientation of the
noninertial frame relative to the inertial frame. To develop a com-
plete six-DOF formulation, some means of transforming arbitrary
vectors between noninertial coordinates and inertial coordinates is
required.

Fig. 1 Comparison between the Euler angle rotations and the Euler
axis rotation.

Euler Angle Formulation
The orientation of the noninertial reference frame relative to the

inertial reference frame can be described in terms of three consec-
utive rotations through three body-referenced Euler angles. There
are 12 possibleways to deéne 3 independentbody-referencedEuler
angles. When started from the inertial reference frame, three con-
secutive rotations are performed, each about one of the three body-
referenced axes, to arrive at the énal noninertial reference frame.
The only restriction required to provide three DOF is that no two
consecutive rotations can be about the same axis. With this restric-
tion, there are six symmetric sets of Euler angles,

’x ! ’y ! ’x ; ’x ! ’z ! ’x ; ’y ! ’x ! ’y

’y ! ’z ! ’y; ’z ! ’x ! ’z; ’z ! ’y ! ’z

and six asymmetric sets,

’x ! ’y ! ’z; ’x ! ’z ! ’y; ’y ! ’x ! ’z

’y ! ’z ! ’x ; ’z ! ’x ! ’y; ’z ! ’y ! ’x

Any of these 12 Euler angle sets can be used for attitude represen-
tation. For example, orbital mechanics and the quantum theory of
angular motion use primarily the ’z ! ’x ! ’z formulation.41¡43

The rotation matrix for each of the 12 sets of Euler angles are pre-
sented by Tandon.44 Graphical methods to illustrate the Euler angle
transformationsare also available.45¡47

The aeronautics community commonly uses the last of the rota-
tionsequences,’z ! ’y ! ’x . These threeEuler angles,commonly
written Ã , µ , and Á, are the azimuth angle or heading, the elevation
angle or pitch attitude, and the bank angle or roll attitude, respec-
tively. For this particular set of Euler angles, the orientation of the
body-éxed frame, xb , yb , and zb , relative to the Earth-éxed frame, x ,
y, and z, is described by performing the three consecutive rotations
in the speciéc orderas follows.First, the Earth-éxed frame is rotated
about the z axis through an angle Ã . Next, the revolved reference
frame is rotated about the new y axis through an angle µ . Finally,
the revolved reference frame is rotated about the new x axis through
an angle Á, to arrive at the énal body-éxed reference frame. This set
of Euler angles is shown in Fig. 1. Readers should be cautionedthat
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other rotation sequences have been associated with the aeronautics
community, for example, ’z ! ’x ! ’y (Ref. 48).

With theusualEuler angledeénitions,consideran arbitraryvector
v having componentsvx , vy , and vz in the inertial coordinatesystem
and having components vxb , vyb , and vzb in the noninertial coordi-
nate system. When the notation SÂ D sin.Â/ and CÂ D cos.Â/ is
used, the transformation of this vector from inertial coordinates to
noninertial coordinates is given by29;44;49;50

vxb

vyb

vzb

D
1 0 0
0 CÁ SÁ

0 ¡SÁ CÁ

Cµ 0 ¡Sµ

0 1 0
Sµ 0 Cµ

CÃ SÃ 0
¡SÃ CÃ 0

0 0 1

vx

vy

vz

D
Cµ CÃ Cµ SÃ ¡Sµ

SÁ Sµ CÃ ¡ CÁ SÃ SÁ Sµ CÃ C CÁCÃ SÁCµ

CÁ Sµ CÃ C SÁ SÃ CÁ Sµ SÃ ¡ SÁCÃ CÁCµ

vx

vy

vz

(1)

Because Newton’s second law is to be written in terms of the nonin-
ertial coordinate system, the gravitationalvector must be expressed
in noninertialcoordinates.ApplyingEq. (1) to the gravitationalvec-
tor produces

gxb

gyb

gzb

D
Cµ CÃ Cµ SÃ ¡Sµ

SÁ Sµ CÃ ¡ CÁ SÃ SÁ Sµ CÃ C Cµ CÃ SÁCµ

CÁ Sµ CÃ C SÁ SÃ CÁ Sµ SÃ ¡ SÁCÃ CÁCµ

0
0
g

D g

¡Sµ

SÁCµ

CÁCµ

(2)

The inverse of the transformationmatrix in Eq. (1) is its transpose,
making

vx

vy

vz

D
Cµ CÃ SÁ Sµ CÃ ¡ CÁ SÃ CÁ Sµ CÃ C SÁ SÃ

Cµ SÃ SÁ Sµ CÃ C CÁCÃ CÁ Sµ SÃ ¡ SÁCÃ

¡Sµ SÁCµ CÁCµ

vxb

vyb

vzb

(3)

and from Eq. (3), the ground speed is related to the airspeed by

Px
Py
Pz

D
Vwx

Vwy

Vwz

C
Cµ CÃ SÁ Sµ CÃ ¡ CÁ SÃ CÁ Sµ CÃ C SÁ SÃ

Cµ SÃ SÁ Sµ CÃ C CÁCÃ CÁ Sµ SÃ ¡ SÁCÃ

¡Sµ SÁCµ CÁCµ

u

v

w

(4)

where the dot over a variable indicates the usual derivative with
respect to time. The two vectors on the right-hand side of Eq. (4)
are, respectively,the wind vector written in Earth-éxed coordinates,

Vw D Vwx ix C Vwy iy C Vwz iy (5)

and the airspeed vector, which is written in body-éxed coordinates,

V D uixb C viyb C wizb
(6)

The relationship between the noninertial angular rates and the
time rate-of-changeof the Euler angles is (see Refs. 23 and 29)

PÁ
Pµ
PÃ

D
1 SÁ Sµ =Cµ CÁ Sµ =Cµ

0 CÁ ¡SÁ

0 SÁ=Cµ CÁ=Cµ

p
q
r

(7)

where the vector on the far right-hand side of Eq. (7) is the angular
velocity vector written in body-éxed coordinates,

! D pixb C qiyb C r izb
(8)

Equations (4) and (7) together provide the kinematic transforma-
tion equations in terms of Euler angles, which allow us to update
the position and orientation of the aircraft with time. The gimbal
lock singularityis seen in the last two terms of the érst and last rows
of Eq. (7). When the Euler elevation angle µ is §90 deg, these four
terms go to inénity, and the Euler angle integration becomes inde-
terminate. Combining Euler angle sequences can sometimes yield
a singularity that is difécult to observe from a cursory inspection
of the equations. Junkins and Shuster51 propose a scheme involv-
ing spherical trigonometric relations to provide a clearer picture
of the singularities. Alternate spacecraft-attitudedynamics models
have been proposed that eliminate the Euler angle singularity (see
Refs. 52 and 53), although the aircraft community has not adopted
them.

Direction Cosine Formulation
The direction-cosinematrix can be formed from any of the sym-

metric or asymmetric Euler angle sets (see Ref. 54). For example,
the matrix on the right side of Eq. (1) is a direction-cosinematrix.
One way to avoid the singularityin Eq. (7) is to treat the nine compo-
nentsof this matrix as a fundamentaldescriptionof orientation.The
elements of this matrix are called the directioncosines. If these nine
direction cosines are known, the components of an arbitrary vector
in body-éxed coordinatesare quitesimplyrelated to the components
of the same vector in inertial coordinates through the deénition of
the direction-cosinematrix [C],

vxb

vyb

vzb

´
C11 C12 C13

C21 C22 C23

C31 C32 C33

vx

vy

vz

(9)

and the gravitationalvector, expressed in body-éxed coordinates, is

gxb

gyb

gzb

D g

C13

C23

C33

(10)

The inverse of the direction-cosine matrix is simply its transpose,
so that the ground speed is related to the airspeed by

Px
Py
Pz

D
Vwx

Vwy

Vwz

C
C11 C21 C31

C12 C22 C32

C13 C23 C33

u

v

w

(11)

When the body-éxed reference frame is undergoing rotation, the
elements of the direction-cosine matrix are functions of time. To
complete the kinematic formulation in terms of direction cosines,
a set of differential equations relating the temporal derivatives of
the nine elements of the direction-cosine matrix to the body-éxed
angular rates is required. These nine equations, known as Poisson’s
kinematic equations, can be written in matrix form as (see Refs. 53
and 54)

PC11 PC12 PC13

PC21
PC22

PC23

PC31 PC32 PC33

D
0 r ¡q

¡r 0 p
q ¡p 0

C11 C12 C13

C21 C22 C23

C31 C32 C33

(12)

Note that there is no standardconventionfor numberingthe direc-
tioncosines.Here, the numberingin Eq. (9) has beendeéned relative
to the forwardtransformation,fromEarth-éxed coordinatesto body-
éxed coordinates.This is the most commonly used notation.18;54¡56

However, other authors have numbered the direction cosines rela-
tive to the inverse transformation, from body-éxed coordinates to
Earth-éxed coordinates.33 One notation is simply the transpose of
theother.Nevertheless,the readershouldbe carefulto observewhich
notation is being used when reviewing a publication or simulation
code.

There are only three DOF associated with orientation. However,
thereareninecomponentsin thedirection-cosinematrix.Thus, these
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nine components cannot be independent. There must be six levels
of redundancy associated with this formulation. It can be shown
that rigid-body rotation is a proper orthogonal transformation.58

Therefore, the direction-cosinematrix is proper orthogonal and the
inverse of the direction-cosine matrix must be its transpose,57;58

[C]¡1 D [C]T . This requires the constraints

C2
11 C C2

21 C C2
31 D 1; C2

12 C C2
22 C C2

32 D 1

C 2
13 C C2

23 C C 2
33 D 1; C11C12 C C21C22 C C31C32 D 0

C11C13 C C21C23 C C31C33 D 0

C12C13 C C22C23 C C32C33 D 0 (13)

These six constraints are usually called the redundancy rela-
tions. Mathematically, Eq. (12) preserves the orthogonality of the
direction-cosine matrix. However, errors associated with integrat-
ing Eq. (12) numerically can cause degradation in the orthogonality
of the matrix. Furthermore, these orthogonalityerrors can build up
with time during the simulation. A method for avoiding this error
buildup with the direction cosine formulation was érst developed
by Corbett and Wright39 and is still commonly used today.

The direction cosine formulation contains no singularities and is
frequently used by the aeronauticscommunity59 to avoid the possi-
bility of gimbal lock. However, numerical integrationof Eq. (12) is
excessively time consuming, and a severe computationalpenalty is
paid for its use.

Euler Axis Formulation
The orientation of the noninertial reference frame relative to the

inertialreferenceframe can be describedin terms of a single rotation
through an angle 2, about a particular axis E, which is commonly
called the Euler axis or the eigenaxis.60 A comparison between this
Euler axis rotation and the Euler angle rotations that are commonly
used by the aircraft community is shown in Fig. 1.

The Euler axis rotation60 gives rise to a four component descrip-
tion of orientation. The four components in this description are the
total rotation angle 2 and the three componentsof a vector directed
along the Euler axis, Ex , Ey , and Ez . Because these four parame-
ters describe an orientation having only three DOF, there must be
some redundancy in the Euler axis description as well. In fact, by
describing orientation in this manner, a fourth mathematical DOF
has been introduced. Clearly, the vector describing the orientation
of the Euler axis could be of any arbitrary length. To remove this
additional mathematical DOF, a constraint must be applied, éxing
the magnitude of the Euler axis vector. Whereas this constraint is
somewhat arbitrary,theusualandmost obvioussolutionis to require
the Euler axis vector to be of unit magnitude,

E2
x C E2

y C E2
z ´ 1 (14)

During the Euler axis rotation the orientation of the Euler axis is
invariant. Thus, the vector E directed along the Euler axis has the
same components in both inertial and noninertial coordinates,

Ex

Ey

Ez

D
Exb

Eyb

Ezb

(15)

The components of an arbitrary vector v in body-éxed coordi-
nates are related to the components of the same vector in Eath-éxed
coordinates through what is commonly called Euler’s formula61

vxb

vyb

vzb

D
Exx C C2 Exy C Ez S2 Exz ¡ Ey S2

Exy ¡ Ez S2 Eyy C C2 Eyz C Ex S2

Exz C Ey S2 Eyz ¡ Ex S2 Ezz C C2

vx

vy

vz

(16)

where Ei j D Ei E j .1 ¡ C2/. Since the early work of Euler, a num-
ber of papers have been written on the derivation of Eq. (16) (see
Refs. 62–68).

From Eq. (16), the gravitational vector expressed in noninertial
coordinates is

gxb

gyb

gzb

D g

Exz ¡ Ey S2

Eyz C Ex S2

Ezz C C2

(17)

The inverse of the transformation matrix in Eq. (16) is obtained by
simply rotating through the negative of the total rotation angle that
is used in the forward transformation,55

vx

vy

vz

D
Exx C C2 Exy ¡ Ez S2 Exz C Ey S2

Exy C Ez S2 Eyy C C2 Eyz ¡ Ex S2

Exz ¡ Ey S2 Eyz C Ex S2 Ezz C C2

vxb

vyb

vzb

(18)

Thus, the ground speed can be related to the airspeed through

Px
Py
Pz

D
Vwx

Vwy

Vwz

C
Exx C C2 Exy ¡ Ez S2 Exz C Ey S2

Exy C Ez S2 Eyy C C2 Eyz ¡ Ex S2

Exz ¡ Ey S2 Eyz C Ex S2 Ezz C C2

u

v

w

(19)

The relationship between the noninertial angular rates and the time
rate-of-changeof the Euler axis rotation parameters is given by

P2
PEx

PEy

PEz

D 1
2

2Ex 2Ey 2Ez

E 0
x x C C=S E 0

x y ¡ Ez E 0
x z C Ey

E 0
x y C Ez E 0

yy C C=S E 0
yz ¡ Ex

E 0
xz ¡ Ey E 0

yz C Ex E 0
zz C C=S

p
q
r

(20)

where E 0
i j D ¡Ei E j C=S, S D sin.2=2/, and C D cos.2=2/. Equa-

tions (19) and (20) are the kinematic transformation equations in
terms of the Euler axis rotation parameters. Notice that Eq. (20)
also has a singularity. When the total rotation angle 2 is zero, the
integration of these equations is indeterminate.

Euler–Rodrigues Quaternion Formulation
The Euler69 –Rodrigues70 formulation is related to the Euler axis

formulation through a simple change of variables. The four param-
eters in the Euler axis description of orientation are used to deéne
four different parameters, which are somewhat more convenient.
These four new parameters are deéned as

e0

ex

ey

ez

´

cos.2=2/

Ex sin.2=2/

Ey sin.2=2/

Ez sin.2=2/

(21)

These four parameters are known as the Euler69–Rodrigues70

symmetric parameters or the quaternion of énite rotation (see
Ref. 71). The Euler–Rodrigues formulationfor rigid-bodykinemat-
ics was developed well before 1844, when the well-known mathe-
matician, Hamilton, érst developed the quaternion and the detailed
theory of a noncommutative algebraic system known as quaternion
algebra.72¡75 Much has been written about the life of Hamilton (see
Refs. 75–77) and his moment of enlightenment concerning quater-
nion formulas while crossing a bridge with his wife. Hamilton, in a
letter to his son, noted he could not resist the impulse to carve the
fundamentalquaternion formula into the stone on the bridge. How-
ever, it is clear that Hamilton did not develop quaternion algebra as
means of describing rotational transformations.

The brief review of the history of the Euler–Rodrigues formu-
lation that is presented here is taken primarily from Altmann,78;79

Shuster,18 and Cheng and Gupta.80 In 1758, an earlywork of Euler81
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showed that any differential movement of a rigid body can be ex-
pressed as a translation and a rotation about some speciéc axis.
Euler’s theorem on the motion of a rigid body,60 as well as Euler’s
formula61 were both published in 1775. The érst publication of the
derivation of the Euler angles82 was in 1862. Although the work
was published posthumously, the date is probably in error because
Euler died in 1783.

Whether Euler knew of the Euler–Rodrigues symmetric parame-
ters is a subjectof debate.In 1770,Euler69 developedfoursymmetric
parameters for orthogonal transformations (without the use of half
angles). Roberson83 andJacobi84 arguethatEuler hadpresenteda ro-
tation matrix in terms of the so-called Euler–Rodriguesparameters.
Shuster18 notes that the symmetric parameters developed by Euler
in the 1770 paper contained sign errors and formed an improper
orthogonal matrix. Note that Euler viewed a matrix as a table. The
matrix as a mathematicalobject would not evolve until vector space
was studied by Grassman,85;86 Gibbs,87 and Heaviside.88 As a side
note, the chief properties of vectors were worked out in Hamilton’s
investigationof quaternion algebra (see Ref. 89).

In 1840, four years before Hamilton began his algebraic study
of quaternions, Rodrigues70 published his work on the Euler–
Rodrigues symmetric parameters, the rules for the compositions,
and a geometricalconstructionfor combining two rotations.Unlike
Hamilton, whose accomplishments are well documented, the only
publishedfactualarticleon Rodriguesdid not appearuntil 1980 (see
Ref. 90). Earlierhistorianshave inventeda collaboratorofRodrigues
by the name of Olinde (see Refs. 91 and 92) or have mistaken his
name as Rodrigue (see Ref. 93) or Rodriques (see Ref. 94). Addi-
tionalhistoricaldetails can be found by Kline,95 Van der Waerden,96

Crowe,97 and McDuffee.98

There is no universal agreement on the choice of indices for
the Euler-Rodrigues symmetric parameters. Most authors use the
indices 1–4 or 0–3. Some authors have chosen indices 1–3 for
the vector components while using 4 as the scalar index,18;99;100

whereas others have used 1 for the scalar index and 2–4 for the vec-
tor component.101 The scalar index has also been chosen as 0 with
indices 1–3 denoting the vector components.15;17;38;102¡107 There is
not even universal agreement on the order of the vector compo-
nents. Whereas most authors assign the x , y, and z components in
ascending order, at least two authors have used 4 to denote the x
component, 3 for the y component, and 2 for the z component.34;37

To avoid confusion in the present paper, the vector components are
explicitly labeled using the subscripts x , y, and z and a 0 subscript
is used to denote the scalar component.

Becausethe fourparametersdeénedbyEq. (21)uniquelydescribe
an orientation having only three DOF, these four parameters must
be related in some way. This relation is easily seen by squaring the
four components of Eq. (21) and adding them together. This gives

e2
0 C e2

x C e2
y C e2

z D cos2.2=2/ C E2
x C E 2

y C E2
z sin2.2=2/ (22)

Because the Euler axis vector E is a unit vector and cos2.Â/ C
sin2.Â/ D 1, it follows that

e2
0 C e2

x C e2
y C e2

z D 1 (23)

The transformation in Eq. (16) can be written in terms of half
the total rotation angle by applying the trigonometric identities,
sin.Â/ D 2 sin.Â=2/ cos.Â=2/; cos.Â/ D cos2.Â=2/ ¡ sin2.Â=2/,
and 1 ¡ cos.Â/ D 2 sin2.Â=2/. Thus, when the notation S D
sin.Â=2/, C D cos.Â=2/, and Ei j D 2Ei E j S2 is used, Eq. (16) can
be rewritten as

vxb

vyb

vzb

D
Exx C C2 ¡ S2 Exy C 2Ez SC Exz ¡ 2Ey SC

Exy ¡ 2Ez SC Eyy C C2 ¡ S2 Eyz ¡ 2Ex SC

Exz C 2Ey SC Eyz ¡ 2Ex SC Ezz C C 2 ¡ S2

vx

vy

vz

(24)

Now, when Eq. (21) is applied and it is recognized that Ei j D 2ei e j

and S2 D .E 2
x C E2

y C E2
z /S2 D e2

x C e2
y C e2

z , Eq. (24) becomes

vxb

vyb

vzb

D
e2

x C e2
0 ¡ e2

y ¡ e2
z 2.ex ey C eze0/ 2.ex ez C eye0/

2.ex ey ¡ eze0/ e2
y C e2

0 ¡ e2
x ¡ e2

z 2.eyez C ex e0/

2.ex ez ¡ eye0/ 2.eyez ¡ ex e0/ e2
z C e2

0 ¡ e2
x ¡ e2

y

£
vx

vy

vz

(25)

The transformationequationgiven by Eq. (25) can be used to obtain
the gravitational acceleration vector in body-éxed coordinates,

gxb

gyb

gzb

D g

2.ex ez ¡ eye0/

2.eyez C ex e0/

e2
z C e2

0 ¡ e2
x ¡ e2

y

(26)

The inverse of the transformationmatrix in Eq. (25) is
vx

vy

vz

D
e2

x C e2
0 ¡ e2

y ¡ e2
z 2.ex ey ¡ eze0/ 2.ex ez C eye0/

2.ex ey C eze0/ e2
y C e2

0 ¡ e2
x ¡ e2

z 2.eyez ¡ ex e0/

2.ex ez ¡ eye0/ 2.eyez C ex e0/ e2
z C e2

0 ¡ e2
x ¡ e2

y

£
vxb

vyb

vzb

(27)

Thus, the ground speed is related to the airspeed by
Px
Py
Pz

D
Vwx

Vwy

Vwz

C
e2

x C e2
0 ¡ e2

y ¡ e2
z 2.ex ey ¡ eze0/ 2.ex ez C ey e0/

2.ex ey C eze0/ e2
y C e2

0 ¡ e2
x ¡ e2

z 2.eyez ¡ ex e0/

2.ex ez ¡ ey e0/ 2.ey ez C ex e0/ e2
z C e2

0 ¡ e2
x ¡ e2

y

£
u

v

w

(28)

The time rate-of-change of the Euler–Rodrigues symmetric pa-
rameters can be related to the time rate of change of the Euler axis
rotation parameters. DifferentiatingEq. (21) produces

Pe0

Pex

Pey

Pez

D

¡sin.2=2/

Ex cos.2=2/

Ey cos.2=2/

Ez cos.2=2/

P2
2

C

0
PEx sin.2=2/
PEy sin.2=2/
PEz sin.2=2/

(29)

When Eq. (20) is used to express the time rate of change of the
Euler axis rotation parameters in terms of the noninertial angular
rates, Eq. (29) can be written as

Pe0

Pex

Pey

Pez

D 1
2

¡Ex S ¡Ey S ¡Ez S
C ¡Ez S Ey S

Ez S C ¡Ex S
¡Ey S Ex S C

p
q
r

(30)
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or after applying Eq. (21)

Pe0

Pex

Pey

Pez

D 1
2

¡ex ¡ey ¡ez

e0 ¡ez ey

ez e0 ¡ex

¡ey ex e0

p
q
r

(31)

Because Eq. (31) is linear in both the noninertial angular rates and
the Euler–Rodrigues symmetric parameters, it can also be written
as108;109

Pe0

Pex

Pey

Pez

D 1
2

0 ¡p ¡q ¡r
p 0 r ¡q
q ¡r 0 p
r q ¡p 0

e0

ex

ey

ez

(32)

Equations(28)and (31)or (32)providethekinematictransformation
equations in terms of the Euler–Rodrigues symmetric parameters.

Robinson37 detailed the advantages of the Euler–Rodrigues
quaternion formulation over the Euler angle or the direction co-
sine formulation almost 50 years ago. Most of his observations,
obtained on analog computers, are still valid in the digital world.
When the Euler elevation angle µ is §90 deg, the Euler angle in-
tegration becomes indeterminate. Despite the singularity, the Euler
angle formulation is widely used because the three Euler angles
have the simple interpretation of heading, elevation angle, and
bank angle.110;111 The Euler–Rodrigues formulation is free of sin-
gularities; however, the physical interpretation of the quaternion is
much less intuitive than that associated with the Euler angles. In a
mathematical study, Stuelpnagel101 considered parameterizationof
a general three-parameter rotation group, four-parameter rotation
group, and éve- and six-parametergroups.He proves that the three-
parameter rotation group leads to nonlinear kinematic equations
and that the Euler–Rodrigues symmetric parameters represent the
smallest number of parameters (four) with linear kinematic equa-
tions. Errors associatedwith numerical integrationof the kinematic
equations for attitude have been characterized for both the quater-
nion and the direction cosine parameterizations,and the superiority
of the quaternion parameterization is well documented.104;111¡116

Lovren and Piper117 show that, for the isolated case of classical
coningmotion, integrationerrors are similar for the direction-cosine
parameterizationand the quaternion parameterization.Another ad-
vantage of the Euler–Rodrigues formulation is the application of
Kalman éltering to quaternion estimation.118¡121 For the reasons
stated earlier, the spacecraft community often utilizes the Euler–
Rodrigues formulation for attitude control systems.104;122¡141

Perhaps the greatest advantage of the quaternion formulation
over either the Euler angle formulation or the direction-cosinefor-
mulation is increased computational speed. Numerical integration
of the nine component direction-cosine formulation is excessively
time consuming when compared with the four component Euler–
Rodriguesformulation.The trigonometricfunctionsin the Euler an-
gle transformation matrix make simulations that use this nonlinear
formulation much more computationallyintensive than those using
the linear equationsof the quaternionformulation.Furthermore, the
computational advantage of the quaternion formulation can be ex-
tended even further through use of Hamilton’s quaternion algebra.
While the Euler–Rodrigues formulation was originally developed
before quaternionalgebrawas conceived, the most computationally
efécient algorithms are in fact based on this mathematical rule set,
érst introduced by Hamilton.72 To demonstrate this computational
advantage, a brief introduction to quaternion algebra is presented
here.

Quaternion Algebra
A general quaternion Q is deéned as

Q ´ Q0 C Qx ix C Qy iy C Qy iz (33)

where Q0, Qx , Q y , and Qz are scalars and ix , iy , and iz are unit vec-
tors in the Cartesian x , y, and z directions, respectively. A quater-
nion has both vector and scalar properties. Vectors and scalars can
be thought of as special cases of the more general quaternion. A
scalar is a quaternion with Qx , Q y , and Qz equal to zero, and a
vector is a quaternion where Q0 equals zero.

For quaternion multiplication, a procedure called the quaternion
product is deéned. Because a vector is a special case of a quater-
nion, care should be taken to distinguish the quaternion product
from either the dot product or the cross product. Here, the quater-
nion productwill be indicated using the operator≠. The quaternion
products of the usual Cartesian unit vectors are deéned according
to the following rule set:

ix ≠ ix ´ ¡1; ix ≠ iy ´ iz; ix ≠ iz ´ ¡iy

iy ≠ ix ´ ¡iz; iy ≠ iy ´ ¡1; iy ≠ iz ´ ix

iz ≠ ix ´ iy ; iz ≠ iy ´ ¡ix ; iy ≠ iz ´ ¡1 (34)

The quaternion product simply follows the distributive law. Thus,
the quaternionproduct of one quaternionA with another quaternion
B is142

A ≠ B D .A0 C Ax ix C Ay iy C Az iz/ ≠ .B0 C Bx ix C By iy C Bz iz/

D .A0 B0 ¡ Ax Bx ¡ Ay By ¡ Az Bz/ C .A0 Bx C Ax B0

C Ay Bz ¡ Az By/ix C .A0 By ¡ Ax Bz C Ay B0 C Az Bx /iy

C .A0 Bz C Ax By ¡ Ay Bx C Az B0/iz (35)

The quaternion products deéned in Eq. (34) are nearly like cross
products, following the right-hand rule. However, special treatment
is given to the quaternion product of a unit vector with itself. Also
note that, in general, A ≠ B 6D B ≠ A and so the quaternion product
is not commutative.Also notice that the quaternionproduct reduces
to simple multiplication for the special case when either operand
is a scalar. However, it does not reduce to either the dot product
or the cross product when both operands are vectors. In general,
the quaternion product of two simple vectors is a four-component
quaternion, equal to the negative of the dot product added to the
cross product,

A ≠ B D ¡.Ax Bx C Ay By C Az Bz/ C .Ay Bz ¡ Az By/ix

C .Az Bx ¡ Ax Bz/iy C .Ax By ¡ Ay Bx /iz D ¡A ¢ B C A £ B
(36)

Quaternions not only have properties of scalars and vectors, but
quaternion algebra also has similarities to complex algebra. The
magnitude of a quaternion is deéned similar to that of a complex
number or a vector,

jQj ´ Q2
0 C Q2

x C Q2
y C Q2

z (37)

Also, a conjugate of a quaternion is deéned as

Q¤ ´ Q0 ¡ Qx ix ¡ Q y iy ¡ Qz iz (38)

where the asterisk indicates a quaternionconjugate.Using Eq. (38)
with Eq. (35) produces

Q ≠ Q¤ D Q2
0 C Q2

x C Q2
y C Q2

z D jQj2 (39)

Thus, similar to a complex variable, the quaternion product of a
quaternion with its conjugate generates a scalar equal to the square
of the magnitude of the quaternion.

The four Euler–Rodrigues symmetric parameters can be thought
of as the four components of a particular unit quaternion e, having
components (e0, ex , ey , ez ), which uniquelyspeciées the orientation
of thenoninertialcoordinatesystemrelativeto the inertialcoordinate
system.Furthermore,the rotationaltransformationgivenby Eq. (25)
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can also be expressedin terms of quaternionproducts.Let v be an ar-
bitrary vector having quaternioncomponents (0, vxb , vyb , vzb ) in the
noninertial coordinate system and having quaternion components
(0, vx , vy , vz ) in the inertial coordinate system. The components
of v in noninertial coordinatesare related to the components of v in
inertial coordinates through the quaternion transformation17

vb D e¤ ≠ .v ≠ e/ (40)

When Eq. (40) is expanded using Eq. (35), the orthogonal trans-
formation can be written as a two-step process using a temporary
quaternion T,

T D v ≠ e D .¡vx ex ¡ vy ey ¡ vzez/ C .vx e0 C vy ez ¡ vzey /ix

C .¡vx ez C vy e0 C vzez/iy C .vx ey C vy ex C vze0/iz (41)

vb D e¤ ≠ T D .e0Tx ¡ ex T0 ¡ ey Tz C ez Ty/ixb C .e0Ty C ex Tz

¡ ey T0 ¡ ez Tx /iyb C .e0Tz ¡ ex Ty C ey Tx ¡ ezT0/izb (42)

From Eq. (40) and the deénitions given in Eqs. (21) and (38), note
that the conjugate of an Euler–Rodrigues quaternion represents the
inverse rotation.

The advantage of Eqs. (41) and (42) over Eq. (25) is a matter
of reduced computation time. The rotational transformation as ex-
pressed in Eq. (25) requires39 multiplicationsand 21 additions.On
the other hand, computing the same transformation from Eqs. (41)
and (42) requires only 24 multiplications and 17 additions. This
translates to a signiécant computational saving. For typical mod-
ern computers, the transformationcomputed from Eq. (25) requires
about 50% greater computation time than does that computed from
Eqs. (41) and (42). This can be quite signiécant in a èight simulator,
which requires a very large number of such transformationsfor the
visual display.143

For aircraft that are not all-attitude vehicles, such as transports,
helicopters, and roll-stabilizedmissiles, Euler angles are often used
to compute attitude because the singularity is not encountered (see
Ref. 144). However, the computational advantage of the quater-
nion transformation is even more impressive when compared with
the Euler angle transformation given by Eq. (1). Even when the
trigonometric functions in Eq. (1) are evaluated only once, the
transformation computed from Eq. (1) requires about 11 times as
long to evaluate as the quaternion transformation computed from
Eqs. (41) and (42). Thus, even ignoring the singularity in the Euler
angle formulation, the quaternion formulation is far superior to
the Euler angle formulation, based on computational eféciency
alone.

In the mid-1980s, algorithms were developed, which further re-
duced the computation time for quaternion multiplication on the
hardware available at that time. For example, Dvornychenko,145

based on the work of Winograd,146;147 presented two algorithms
that were claimed to reduce computation time. The érst of these
algorithms requires 11 multiplications and 19 additions. The sec-
ond requires 10 multiplications and 26 additions. This compares
to 16 multiplications and 12 additions for the conventional quater-
nion multiplicationdescribed in Eq. (35). The hardware available at
that time required something on the order of éve instruction cycles
for multiplication and only one cycle for addition. Thus, trading
éve multiplicationsfor seven additions would result in a signiécant
reduction in computation time, for the hardware of that era. How-
ever, typical modern hardware requires only one instruction cycle
for multiplication and one instruction cycle for addition. Thus, the
algorithms that were developed in the 1980s to speed up quater-
nion transformations will actually slow down the transformations
when used with today’s hardware. As late as 1993, Schuter18 has
claimed that these algorithmswill speed up the transformations.For
simulations run on modern hardware, these old algorithms should
be replaced with the more straightforward algorithm speciéed by
Eq. (35).

The system of differentialequations,which governsthe change in
the transformationquaternionwith time, can also be written in terms
of a quaternionproduct.100;148 This differential system, speciéed by
either Eq. (31) or Eq. (32), can be written as

Pe D 1
2 e ≠ ! (43)

where ! is the angular velocity vector in body-éxed coordinates,
as deéned by Eq. (8). Writing the quaternion differential equation
in this form provides no computational saving over the matrix form
given by Eq. (32). From Eq. (35), it is observed that the quaternion
product in Eq. (43) requires 16 multiplications and 12 additions.
This is exactly equivalent to that required for the matrix multipli-
cation in Eq. (32). However, the matrix multiplication in Eq. (31)
requires only 12 multiplications and 8 additions. Thus, the tem-
poral derivative of the transformationquaternion should always be
computed from Eq. (31).

Aircraft simulations often deal with more than two coordinate
systems. For example, a single simulation could use an inertial
coordinate system éxed to the center of the Earth, an Earth-éxed
coordinate system at the aircraft’s local latitude and longitude, an
atmosphere-éxed coordinate system, and an aircraft body-éxed co-
ordinate system. In such simulations, it is convenient to be able to
combine eféciently a succession of coordinate rotations into a sin-
gle transformation. This is, of course, readily accomplished when
using a direction-cosine transformation by simply multiplying the
direction-cosinematrices for each successiverotation.For example,
if [C]1¡2 is the direction cosine matrix for the transformation from
coordinate system 1 to coordinate system 2 and [C]2¡3 is the direc-
tion cosine matrix for the transformation from coordinate system 2
to coordinate system 3, we can write

[C]1¡3 D [C]2¡3[C]1¡2 (44)

where [C]1¡3 is the direction cosine matrix for the transformation
from coordinate system 1 to coordinate system 3. Because ma-
trix multiplication is not commutative, the right-to-leftorder of the
multiplication is important.

In an analogousmanner, a successionof coordinate rotations can
be combined into a single Euler–Rodrigues quaternion by making
use of the quaternion product deéned in Eq. (35). If e1¡2 is the
quaternion for the transformation from coordinate system 1 to co-
ordinate system 2 and e2¡3 is the quaternion for the transformation
from coordinate system 2 to coordinate system 3, then the Euler–
Rodriguesquaternionfor the transformationfromcoordinatesystem
1 to coordinate system 3 is given by

e1¡3 D e1¡2 ≠ e2¡3 (45)

Here again the order of multiplication is important because the
quaternion product is not commutative. Notice that this quaternion
product requires a left-to-rightorder,which contrastswith the right-
to-left order requiredfor directioncosinematrix multiplication.The
relation given by Eq. (45) is not directly obvious from examination
of Eq. (40). Whittaker1 demonstrates the validity of this result.

There is some confusion in the literature regarding the or-
der of multiplication required when using the Euler–Rodrigues
quaternion for a succession of coordinate rotations. For example,
Dvornychenko145 presents a right-to-left ordering of the of the
quaternion product, which is opposite to that shown in Eq. (45).
This is because Dvornychenko has also used an unconventional
quaternion deénition, which has the vector components deéned as
the negative of those deéned in Eq. (21). The positive signs used in
Eq. (21) correspondto the conventionalright-handEuler–Rodrigues
quaternion,which is based on a right-hand rotation about the Euler
axis. The negative signs used by Dvornychenko146 result in a left-
hand quaternion, which is not normally used. When the right-hand
Euler–Rodriguesquaternionis used, successivecoordinaterotations
must be expressed using the left-to-right quaternion product that is
shown in Eq. (45).
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Relationships Between the Quaternion
and other Attitude Descriptors

The physical interpretationof the Euler–Rodrigues quaternion is
much less intuitive than that associated with the Euler angles. For
this reason it is convenient to be able to relate the quaternion to the
Euler angles. Such a relationcan be obtained by combiningEqs. (1)
and (25). These two equations require

e2
x C e2

0 ¡ e2
y ¡ e2

z 2.ex ey C eze0/ 2.ex ez ¡ eye0/

2.ex ey ¡ eze0/ e2
y C e2

0 ¡ e2
x ¡ e2

z 2.ey ez C ex e0/

2.ex ez C ey e0/ 2.eyez ¡ ex e0/ e2
z C e2

0 ¡ e2
x ¡ e2

y

D
Cµ CÃ Cµ SÃ ¡Sµ

SÁ Sµ CÃ ¡ CÁ SÃ SÁ Sµ CÃ C CÁCÃ SÁCµ

CÁ Sµ CÃ C SÁ SÃ CÁ Sµ SÃ ¡ SÁCÃ CÁCµ

(46)

This matrix equation provides nine scalar equations relating the
four components of the Euler–Rodrigues quaternion e to the three
Euler angles, Á, µ , and Ã . However, the nine components of the
matrices on both sides of Eq. (46) each describe a rotation having
only threeDOF. Thus, there are six levelsof redundancyin Eq. (46).
Additionally,Eq. (23) must also be satiséed, which simply requires
that e be a unit quaternion.The threeDOF in Eq. (46) combinedwith
the requirement in Eq. (23) provide exactly the four DOF needed to
solve for the four components of the quaternion e.

When the diagonalcomponentsof Eq. (46) are combinedwith the
requirement for a unit quaternion expressed in Eq. (23), a four-by-
four system of algebraic equations for the squares of the quaternion
components is obtained,

1 1 ¡1 ¡1
1 ¡1 1 ¡1
1 ¡1 ¡1 1
1 1 1 1

e2
0

e2
x

e2
y

e2
z

D

Cµ CÃ

SÁ Sµ SÃ C CÁCÃ

CÁCµ

1

(47)

This system is readily solved by direct elimination to give

e2
0

e2
x

e2
y

e2
z

D 1
4

1 C Cµ CÃ C SÁ Sµ SÃ C CÁCµ C CÁCÃ

1 ¡ CÁCµ ¡ SÁ Sµ SÃ ¡ CÁCÃ C Cµ CÃ

1 ¡ Cµ CÃ ¡ CÁCµ C SÁ Sµ SÃ C CÁCÃ

1 ¡ Cµ CÃ C CÁCµ ¡ SÁ Sµ SÃ ¡ CÁCÃ

(48)

Applying the half angle identities, Eq. (48) is written as

e2
0

e2
x

e2
y

e2
z

D

.CÁ=2Cµ=2CÃ=2 C SÁ=2Sµ=2SÃ=2/
2

.SÁ=2Cµ=2CÃ=2 ¡ CÁ=2Sµ=2SÃ=2/
2

.CÁ=2Sµ=2CÃ=2 C SÁ=2Cµ=2SÃ=2/
2

.SÁ=2 Sµ=2CÃ=2 C CÁ=2Cµ=2SÃ=2/
2

(49)

Each of these component equations has two possible solutions,
and so the signs are indeterminate at this point. The off-diagonal
components of Eq. (46) may be extracted to produce

0 0 2 2 0 0
0 0 ¡2 2 0 0
0 ¡2 0 0 2 0
0 2 0 0 2 0
2 0 0 0 0 2

¡2 0 0 0 0 2

e0ex

e0ey

e0ez

ex ey

ex ez

eyez

D

Cµ CÃ

SÁ Sµ SÃ ¡ CÁ SÃ

¡Sµ

CÁ Sµ CÃ C SÁ SÃ

SÁCµ

CÁ Sµ SÃ ¡ SÁCÃ

(50)

This simple algebraicsystemis easilysolvedby addingand subtract-
ing appropriate pairs of equations. Replacing the érst and second

equations with their sum and their difference and doing likewise
with the other two pairs of equations results in

e0ex

e0ey

e0ez

ex ey

ex ez

eyez

D 1
4

SÁCµ ¡ CÁ Sµ SÃ C SÁCÃ

CÁ Sµ CÃ C SÁ SÃ C Sµ

Cµ SÃ ¡ SÁ Sµ CÃ C CÁ SÃ

Cµ SÃ C SÁ Sµ CÃ ¡ CÁ SÃ

CÁ Sµ CÃ C SÁ SÃ ¡ Sµ

SÁCµ C CÁ Sµ SÃ ¡ SÁCÃ

(51)

When Eq. (49) is used in Eq. (51) and the half-angle identities are
applied, the off-diagonal components of Eq. (46) reduce to

s0sx .SÁCµ ¡ CÁ Sµ SÃ C SÁCÃ/

s0sy .CÁ Sµ CÃ C SÁ SÃ C Sµ /

s0sz.¡Cµ SÃ C SÁ Sµ CÃ ¡ CÁ SÃ /

sx sy.Cµ SÃ C SÁ Sµ CÃ ¡ CÁ SÃ /

sx sz.¡CÁ Sµ CÃ ¡ SÁ SÃ C Sµ /

sy sz.¡SÁCµ C CÁ Sµ SÃ C SÁCÃ/

D

SÁCµ ¡ CÁ Sµ SÃ C SÁCÃ

CÁ Sµ CÃ C SÁ SÃ C Sµ

Cµ SÃ ¡ SÁ Sµ CÃ C CÁ SÃ

Cµ SÃ C SÁ Sµ CÃ ¡ CÁ SÃ

CÁ Sµ CÃ C SÁ SÃ ¡ Sµ

SÁCµ C CÁ Sµ SÃ ¡ SÁCÃ

(52)

where s0, sx , sy , and sz are the unknown signs of the quaternion
components from Eq. (49). Thus, the off-diagonal components
of Eq. (46) provide only three additional pieces of information,
s0sx D 1, s0sy D 1, and s0sz D ¡1. When these signs are used with
Eq. (49), only two possible solutions to Eq. (46) exist, which are

e0

ex

ey

ez

D §

CÁ=2Cµ=2CÃ=2 C SÁ=2 Sµ=2SÃ=2

SÁ=2Cµ=2CÃ=2 ¡ CÁ=2 Sµ=2SÃ=2

CÁ=2Sµ=2CÃ=2 C SÁ=2Cµ=2SÃ=2

CÁ=2Cµ=2SÃ=2 ¡ SÁ=2Sµ=2CÃ=2

(53)

Both of these solutions are valid. Obviously, any orientationof one
coordinate system relative to another can be described in terms of
two different right-hand rotations. For example, a right-hand rota-
tion of 90 deg about the positive x axis is equivalent to a right-hand
rotation of 270 deg about the negative x axis. The two solutions ex-
pressedin Eq. (53) representthese two equivalentrotations.Usually
the positive sign is selected.

The inverse of Eq. (53) is obtained from Eq. (46) as well. This is
rather straightforwardand yields105

Á

µ

Ã

D
atan 2 2.e0ex C ey ez/; e2

0 C e2
z ¡ e2

x ¡ e2
y

asin[2.e0ey ¡ ex ez/]

atan 2 2.e0ez C ex ey /; e2
0 C e2

x ¡ e2
y ¡ e2

z

(54)

The function atan 2 in Eq. (54) is a two-argument arctangent that
returns a result in the proper quadrant, such as the atan 2 intrinsic
provided in FORTRAN and C. The two-argument function is not
needed for the elevation angle µ because this angle is deéned only
in the range from ¡º=2 to º=2.

The Euler–Rodrigues quaternion is also related to the total rota-
tion angle and the Euler axis components through the deénition of
the Euler–Rodrigues symmetric parameters,

e0

ex

ey

ez

´

cos.2=2/

Ex sin.2=2/

Ey sin.2=2/

Ez sin.2=2/

(55)
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The inverse of Eq. (55) is readily found to be

2

Ex

Ey

Ez

D

2 cos¡1.e0/

ex= sin.2=2/

ey= sin.2=2/

ez= sin.2=2/

(56)

Thus, from knowledge of the four components of the Euler–
Rodrigues quaternion, the orientation of the noninertial reference
frame with respect to the inertial reference frame can be expressed
as a single rotation about a known axis through a known angle.
For nonzero rotation angles, the three vector components of this
unit quaternioncompose a vector directed along the Euler axis. The
scalar component of this quaternion is equal to the cosine of one-
half the angle of rotation about this axis, in a direction deéned by
the right-hand rule. If the scalar component of this quaternion is
§1, the orientation of the Euler axis is indeterminate. However, a
scalar componentof §1 would indicatea total rotationangleof zero,
making knowledge of the Euler axis unnecessary. It is important to
recognize that, like the Euler axis vector E, the four components of
the unit quaternione are the same in both the inertialand the noniner-
tial reference frames. Thus, a reference frame need not be speciéed
when referring to the components of this particular quaternion.

During the 1970s the spacecraft community utilized both the di-
rection cosinesand the Euler–Rodriguesquaternionto describeatti-
tude.For example,in spaceshuttle steeringalgorithmsthecommand
attitude was computed as a direction-cosinematrix, whereas the at-
titudeerrorwas more convenientlydescribedas a quaternion.102 The
quaternionwas used to describethe attitudeerror becauseof its sim-
ple physical interpretation.The error axis coincides with the vector
part of the error quaternion,and the total error is readily determined
from the scalarpart.To compute the errorquaternion,the command-
attitudequaternionwas érst extracted from the direction-cosinema-
trix. Several other space shuttle èight algorithms also required the
determination of an attitude quaternion from a direction-cosines
matrix. Consequently, a number of papers have been written on
extracting the quaternion from the direction cosines.103;149¡152 The
mostefécientmethodwas érst publishedin 1978byShepperd104 and
has been restated by Shuster and Natanson.99 The aircraft and mis-
sile community is still using both the direction cosines59;153 and the
Euler–Rodrigues quaternion (see Refs. 35 and 154–156) as attitude
descriptors for aircraft èight simulation.

The direction cosines can be expressed in terms of the four com-
ponentsof theEuler–Rodriguesquaternionbyequatingthe left-hand
side of Eqs. (9) to the left-hand side of Eqs. (25):

C11 C12 C13

C21 C22 C23

C31 C32 C33

D
e2

x C e2
0 ¡ e2

y ¡ e2
z 2.ex ey C eze0/ 2.ex ez ¡ ey e0/

2.ex ey ¡ eze0/ e2
y C e2

0 ¡ e2
x ¡ e2

z 2.ey ez C ex e0/

2.ex ez C ey e0/ 2.eyez ¡ ex e0/ e2
z C e2

0 ¡ e2
x ¡ e2

y

(57)

Combining the diagonal components of Eq. (57) with Eq. (23) pro-
vides a four-by-four system of equations that is readily solved to
relate the squares of the quaternion components to the diagonal
components of the direction-cosinematrix,

e2
0

e2
x

e2
y

e2
z

D 1
4

1 C C11 C C22 C C33

1 C C11 ¡ C22 ¡ C33

1 ¡ C11 C C22 ¡ C33

1 ¡ C11 ¡ C22 C C33

(58)

The off-diagonalcomponents of Eq. (57) can be rearranged to give

e0ex

e0ey

e0ez

ex ey

ex ez

ey ez

D 1
4

C23 ¡ C32

C31 ¡ C13

C12 ¡ C21

C12 C C21

C31 C C13

C23 C C32

(59)

The components of the quaternion can be computed, without sin-
gularities, from the direction cosines by using Eqs. (58) and (59).
This is done by érst énding the quaternion component of greatest
magnitude from Eq. (58),

e2
max D max e2

0 ; e2
x ; e2

y; e2
z (60)

Once the component of largest magnitude has been determined, the
quaternion is computed from one of the following algorithms:

if e2
0 D e2

max ; e0 D § 1 C C11 C C22 C C33 2

ex D .C23 ¡ C32/=4e0; ey D .C31 ¡ C13/=4e0

ez D .C12 ¡ C21/=4e0 (61)

if e2
x D e2

max ; ex D § 1 C C11 ¡ C22 ¡ C33 2

e0 D .C23 ¡ C32/=4ex ; ey D .C12 C C21/=4ex

ez D .C31 C C13/=4ex (62)

if e2
y D e2

max ; ey D § 1 ¡ C11 C C22 ¡ C33 2

e0 D .C31 ¡ C13/=4ey; ex D .C12 C C21/=4ey

ez D .C23 C C32/=4ey (63)

if e2
z D e2

max ; ez D § 1 ¡ C11 ¡ C22 C C33 2

e0 D .C12 ¡ C21/=4ez; ex D .C31 C C13/=4ez

ey D .C23 C C32/=4ez (64)

Notice that, as was the case with Eq. (46), there are two possible
quaternionsthat will satisfy Eq. (57). These are the same two equiv-
alent quaternions that were discussed following Eq. (53).

Applying Rotational Constraints
to the Quaternion Formulation

It is occasionally desirable to simulate aircraft motion with one
or more of the rotational DOF constrained. This is normally ac-
complished using the Euler angle formulation. However, because
the quaternion transformation is more than an order of magnitude
faster than the Euler angle transformation, the ability to apply ro-
tational constraints to the quaternion formulation may be of some
interest.

When applying rotational constraints, the coordinate system in
which the constraint will be applied must be speciéed. For exam-
ple, a roll constraint is very different from a bank angle constraint.
The roll can be constrained very simply, in either the Euler angle
formulation or the quaternion formulation, by simply replacing the
xb component of the angularmomentum equation with the roll con-
straint

p D 0 (65)

However, note that constrainingthe roll does not constrain the bank
angle. All three Euler angles can still take any possible value with
the roll completely constrained.
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To constrain the bank angle, using the quaternion formulation,
Eq. (54) is employed. If the bank angle is to remain zero, Eq. (54)
requires

e0ex C eyez D 0 (66)

and

ex Pe0 C e0 Pex C ez Pey C ey Pez D 0 (67)

Applying Eq. (32) to Eq. (67) produces

ex .¡pex ¡ qey ¡ rez/ C e0. pe0 C rey ¡ qez/

C ez.qe0 ¡ rex C pez/ C ey .re0 C qex ¡ pey/ D 0 (68)

This can be simpliéed to yield the quaternionbank angle constraint

e2
0 C e2

z ¡ e2
x ¡ e2

y p C 2.e0ey ¡ ex ez/r D 0 (69)

Thus, to constrain the bank angle, the roll and the yaw must be
coordinated according to Eq. (69).

If the roll is to be constrained as well as the bank angle, then
Eq. (69) requires

2.e0ey ¡ ex ez/r D 0 (70)

From Eq. (54), this is equivalent to

sin.µ/r D 0 (71)

Here it is observed that, if both the roll and the bank angle are to be
constrained, then either the yaw or the elevation angle must also be
constrained.With any nonzero elevation angle, any amount of yaw
will produce a bank angle. This is not a function of the quaternion
formulation. It is a simple kinematic fact.

The relationship between the body-éxed angular rates and the
Euler angles, which was demonstrated here by using the roll and
bank angle, is true in general. None of the Euler angles can be con-
strained by constraining only one of the body-éxed angular rates.
The bank angle can be changedusing only pitch and yaw, the eleva-
tion angle can be changed using only roll and yaw, and the azimuth
angle can be changed using only roll and pitch. Any motion having
only one of the rotational DOF constrained, in body-éxed coordi-
nates, allows for all three DOF in orientation.

Similarly, the other rotational DOF can be constrained using the
pitch constraint

q D 0 (72)

the quaternion elevation angle constraint

e2
0 C e2

z ¡ e2
x ¡ e2

y q ¡ 2.e0ex C eyez/r D 0 (73)

the yaw constraint

r D 0 (74)

and the quaternion azimuth angle constraint

2.e0ex ¡ eyez/q C e2
0 C e2

y ¡ e2
x ¡ e2

z r D 0 (75)

Motion with only one rotational DOF, in body-éxed coordinates,
can also be simulated using the quaternion formulation. Constrain-
ing any two rotationalDOF in body-éxed coordinateswill constrain
two DOF in orientation.For pure rolling motion,

q D r D 0 (76)

Using these constraints in Eq. (32) gives

Pe0

Pex

Pey

Pez

D 1
2

0 ¡p 0 0
p 0 0 0
0 0 0 p

0 0 ¡p 0

e0

ex

ey

ez

D p
2

¡ex

e0

ez

¡ey

(77)

If the elevation angle and the azimuth angle are both initially zero,
from Eq. (53), the initial condition is

e0

ex

ey

ez t D 0

D

cos.Á0=2/

sin.Á0=2/

0
0

(78)

When Eq. (78) is used with Eq. (77), note that both ey and ez remain
zero during this motion. Thus, pure rolling motion can be simulated
using the constraints

q D r D ey D ez D 0 (79)

Similarly, pure pitching motion could be simulated by applying the
quaternion constraints

p D r D ex D ez D 0 (80)

and pure yawing motion results from the constraints

p D q D ex D ey D 0 (81)

Closed-Form Quaternion Solution for Constant Rotation
It is possible to obtain a closed-form solution to the quaternion

formulation for the case of constant rotation. Although such a con-
dition would frequently occur in spacecraft applications, it almost
never occurs in aircraft applications.The angular rates experienced
by a moving aircraft depend on the aerodynamic moments acting
on the craft and are almost always changing with time. In this case,
closed-form solutions to the quaternion formulation are very difé-
cult or impossibleto obtain, for all but the most trivial conditions.157

Nevertheless, closed-form analytic solutions to the quaternion for-
mulation for the case of constant angular rates provide an excellent
mechanism for verifying158;159 the numerical algorithms used to in-
tegrate the quaternionformulation.For such veriécation, it is useful
to have a general solution that allows for rotation about any or all
of the body-éxed axes. The development of such a solution, from
Eq. (32), is rather straightforward.

Considera rigidbodythat is rotatingat a constantangularvelocity.
The differential equations governing the change in the components
of the quaternion e with time are given by Eq. (32). This system of
differential equations can be written in matrix notation as

Pe ¡ [M]e D 0 (82)

where

[M] D 1
2

0 ¡p ¡q ¡r
p 0 r ¡q
q ¡r 0 p
r q ¡p 0

(83)

When the matrix [M] is constant, the solution to Eq. (82) is

e.t/ D [exp.[M]t/]e.0/ (84)

where the matrix exponential [exp.[M]t/] is computed from the
matrix series deénition

[exp.[M]t/] ´ [I] C [M]t C [M][M]t 2=2! C ¢ ¢ ¢ (85)

Here e.0/ is the initial valueof the quaternionat time t D 0, and [I] is
the identity matrix. If the matrix [M] were completely arbitrary, the
matrix exponentialwould need to be evaluated by summing a large
number of terms in the inénite series. However, in this particular
case we can take advantage of a special property of the matrix that
is deéned in Eq. (83).

By direct multiplication it is readily shown from Eq. (83) that

[M][M] D ¡ 1
4 !2[I] (86)
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where !2 D p2 C q2 C r 2. When use is made of Eq. (86), the inénite
series in Eq. (85) can be rearranged as

[exp.[M]t/] ´ [I] 1 ¡ .!t=2/2

2!
C .!t=2/4

4!
C ¢ ¢ ¢

C 2
!

[M]
!t
2

¡ .!t=2/3

3!
C .!t=2/5

5!
C ¢ ¢ ¢

or

[exp.[M]t/] ´ [I] cos.!t=2/ C .2=!/[M] sin.!t=2/ (87)

Using Eq. (87) in Eq. (84) yields the general closed-form solution
for constant rotation

e.t/ D [[I] cos.!t=2/ C .2=!/[M] sin.!t=2/]e.0/ (88)

For the special initial conditionwhere all threeEuler anglesare zero,

e0.0/

ex .0/

ey.0/

ez.0/

D

1
0
0
0

(89)

the solution given by Eq. (88) reduces to the rather obvious result

e0

ex

ey

ez

D

cos.!t=2/

.p=!/ sin.!t=2/

.q=!/ sin.!t=2/

.r=!/ sin.!t=2/

(90)

Equations (88) and (90) provide an excellentmechanism for testing
most numerical algorithms used to integrate the quaternion formu-
lation.

Numerical Integration of the Quaternion Formulation
When integratingEq. (32) numerically, the zeros on the diagonal

can cause some problems. Integration of this system can result in
very large numerical errors if a érst-order method is used. For this
reason, a higher-order method, such as fourth-order Runge–Kutta
or fourth-orderAdams–Bashforth–Moulton (see Refs. 160 and 161)
should always be used to integrate the quaternion formulation. Be-
cause most modern numerical codes use such methods, this is not
at all restrictive for simulations run on modern digital computers.

Historically, aircraft simulations using the quaternion formula-
tionwereérst commonly runusinganalogcomputers.Becausethese
analog simulations were inherently érst order, the raw quaternion
formulationdid not work well. When such simulationswere run, the
magnitude of the quaternion would grow quite rapidly with time.
Because the formulation requires the magnitude of the quaternion
to remain unity to maintain orthogonalityin the attitudetransforma-
tion, these large orthogonality errors would render the simulations
almost useless.To remedy this problem, techniqueswere developed
to reduce this orthogonality error. One such method, developed by
Robinson36;37 and popularized by Mitchell and Rogers,38 is based
on the method érst suggestedby Corbett and Wright39 for maintain-
ing orthogonality in the direction-cosinematrix. With this method,
the kinematic equations in Eq. (32) were modiéed to include error
reduction terms on the diagonal,

Pe0

Pex

Pey

Pez

D 1
2

k" ¡p ¡q ¡r
p k" r ¡q
q ¡r k" p
r q ¡p k"

e0

ex

ey

ez

(91)

where " is the orthogonalityerror deéned as

" D 1 ¡ e2
0 C e2

x C e2
y C e2

z (92)

Fig. 2 Effect of changing the gain coefécient on the accuracy of a érst-
order Euler algorithm using Corbett–Wright orthogonality control.

and k is a gain coefécient, which Mitchell and Rogers38 said should
be “set to a very high value.” This error reduction scheme, which
shall be called Corbett–Wright orthogonality control,39 worked
quite well when used with the analog computers of that era.

Although analog computers are no longer widely available, it is
possible to demonstrate approximately how Corbett–Wright39 or-
thogonalitycontrol worked with an analog computer by integrating
Eq. (91) usinga érst-orderEuler integrationscheme.Results of such
an integrationare shown in Fig. 2. For Fig. 2, the totalerrorwas com-
puted as the difference between the numerical result and the exact
solution from Eq. (88). Notice that, as the value of the Corbett–
Wright39 gain coefécient approaches zero, which is the case of no
orthogonality control, the total error becomes very large. For gain
coefécients larger than about 0.5!, the error is reduced to a more or
less acceptable level. With the exception of the increase in error on
the right, the results shown in Fig. 2 are very similar to the results
reported by Mitchell and Rogers38 for a typical analog computer.
Unlike the érst-order digital integration, analog simulations were
well behaved for very large values of k. The abrupt increase in error
that is seen in Fig. 2 for k=! greater than about 5.7 is a result of the
well-known Euler instability that is associated with any érst-order
numerical integration. For Eq. (91), Fang and Zimmerman162 have
shown that this érst-order instability occurs whenever the product
of the gain coefécient and the time step is greater than unity,

k±t > 1

When digital computers érst became fast enough to replace ana-
log computers for running such simulations, (Corbett–Wright39 ),
orthogonality control was often used in the digital solution algo-
rithms. Furthermore, this orthogonality control is still widely used
for aircraft èight simulation today.33;40 It is, however, not neces-
sary. When a modern digital computer is used to integrate Eq. (32)
with any of the prevalent fourth-order numerical methods, the or-
thogonality error is extremely small. Using the Corbett–Wright39

orthogonality control scheme with these modern numerical algo-
rithms increases the computation time but does little to improve the
accuracy of the simulation.

Even though the orthogonalityerror for modern numerical algo-
rithms is very small, it can accumulate.Thus, if a simulation is to be
run for long periods of time using large time steps, the quaternion
should be renormalized periodically.The quaternion may be renor-
malized by dividing each component by the magnitude,154;163;164

er D e=jej D e e2
0 C e2

x C e2
y C e2

z (93)

where the subscriptr indicates the renormalizedquaternion.As can
be seen in Fig. 2, renormalization is not as accurate as Corbett–
Wright39 orthogonalitycontrol for érst-order integration.However,
a different result is obtained for higher-orderintegration.If the time
steps used with fourth-order Runge–Kutta are of a size to produce
about 10 deg of revolution per time step, it requires about 3 £ 106

iterations to degrade the magnitude of the quaternion by 1%. Be-
cause a very long renormalization period can be used, periodic
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Fig. 3 Effect of changing the gain coefécient on the accuracy of a
fourth-order Runge–Kutta algorithm using Corbett–Wright orthogo-
nality control.

Fig. 4 Effect of changing the angularrate on the accuracy of a fourth-
order Runge–Kutta algorithm using Corbett–Wright orthogonality
control.

renormalization of the quaternion is much faster than using the
Corbett–Wright orthogonalitycontrol scheme. However, if compu-
tation time is not a concern, Corbett–Wright orthogonality control
will eliminate the growth of the orthogonalityerror for simulations
using large time steps. If the time steps are small enough to produce
about5 deg of rotationor less per time step, no orthogonalitycontrol
whatsoever is required with fourth-order Runge–Kutta integration.

If the Corbett–Wright39 orthogonality control scheme is to be
used for large time-step simulations, it should be remembered that
this only eliminates the growth of the orthogonality error. It does
not eliminate the drift error, which for modern algorithms can be
much larger than the orthogonalityerror. In fact, when a large gain
coefécient is used with fourth-orderintegrationand Corbett–Wright
orthogonality control, the drift error is increased by more than the
orthogonalityerror is reduced,which actually increasesthe net error
for the simulation.This is shown in Fig. 3. In contrastwith the older
analog simulations that used a very large gain coefécient, when
Corbett–Wright orthogonality control is used with a fourth-order
digital integration, a gain coefécient larger than about 2! should
not be used. As can be seen in Fig. 4, this is truly independent of
the angular rate. Furthermore, as is seen in Fig. 5, decreasing the
time step does not eliminate this problem. For such fourth-order
integration, a gain coefécient equal to the magnitude of the angular
velocity will effectively eliminate the growth of the orthogonality
error associated with large time steps without adversely affecting
the drift error. However, for aircraft èight simulations, the angular
rates are not typically known a priori. Furthermore, the angular rate
is typicallychangingwith time, and a very low angular rate requires
a very low gain coefécient for accurate simulation. Thus, to avoid
increasing the total error, a variable gain coefécient equal to the
angular rate should be used,

k D ! D p2 C q2 C r 2 (94)

Fig. 5 Effect of reducing the step size onthe accuracy of a fourth-order
Runge–Kutta algorithm using Corbett–Wright orthogonality control.

Fig. 6 Effect of changing the gain coefécient on the accuracy of the
Fang and Zimmerman algorithm using Corbett–Wright orthogonality
control.

The implementation of Eq. (94) adds substantially to the computa-
tional burden of Corbett–Wright39 orthogonality control. Thus, for
greatest computational eféciency, it is much preferred to use peri-
odic renormalizationof the quaternionover any use of the Corbett–
Wright orthogonalitycontrol scheme.

In 1969 Fang and Zimmerman162 proposeda pseudo-fourth-order
method for integrating Eq. (91). With conventional fourth-order
Runge–Kutta, the time rate of change of the quaternion is com-
puted from Eq. (91) four times for each time step. With the Fang
and Zimmerman algorithm,this same fourth-orderprocedureis used
to integrate Eq. (91), except that " is held constant through all four
computations in each time step. The orthogonalityerror is updated
only once at the beginning of each full time step.

The Fang and Zimmerman162 algorithm exhibits features of both
érst-order and fourth-order numerical integration. Although both
the angular velocity and the quaternion on the right-hand side of
Eq. (91) are estimated to fourth-orderaccuracy, " is only estimated
to érst-order accuracy. Results of integrating Eq. (91) using the
Fang and Zimmerman algorithm are shown in Fig. 6. Notice that
the accuracy of the method, for small values of the gain coefé-
cient, is comparable to that for full fourth-order integration. How-
ever, the method also exhibits an abrupt érst-order instability when
the gain coefécient is greater than one divided by the time step
k > 1=±t .

Note from Figs. 3–6 that Corbett–Wright39 orthogonalitycontrol
offersno signiécant reductionin simulationerror formodernnumer-
ical integrationalgorithms.On the other hand, if the gain coefécient
is not judicially chosen, Corbett–Wright orthogonality control can
signiécantly increase the simulation error. Periodic renormalization
of the quaternion does not present this problem and is much more
computationallyefécient.

The computation time required for periodic renormalization of
the quaternion can be reduced even further by recognizing that the
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orthogonality error is always very small for modern fourth-order
integration algorithms. Equation (93) can be written as

er D e e2
0 C e2

x C e2
y C e2

z D e=
p

1 ¡ " (95)

where " is the error in the square of the quaternion magnitude, as
given by Eq. (92). Because " is very small, Eq. (95) can be closely
approximated as162

er
ªD e 1 C 1

2 " (96)

or after applying Eq. (92)

er
ªD e 1:5 ¡ 0:5 e2

0 C e2
x C e2

y C e2
z (97)

Periodic applicationof Eq. (97) is sufécient to eliminate the growth
of the orthogonalityerror for all time.

Renormalizing the quaternion with Eq. (97) requires nine mul-
tiplications and four additions. Using Eq. (93), on the other hand,
requires eight multiplications, three additions, one square root, and
one division. Typical modern hardware requires 1 instructioncycle
for addition,1 instructioncycle for multiplication,somethingon the
order of 4 instruction cycles for division, and anywhere from 4 to
30 instruction cycles for the square root operation, depending on
the processor and the compiler. Thus, renormalizing with Eq. (93)
requires anywhere from about 50 to 250% greater computationtime
than usingEq. (97), on typical modern hardware.Furthermore, even
if future developments reduce the time required for division and
square root to one instruction cycle each, Eq. (97) will be, at worst,
computationallyequivalent to Eq. (93).

Although periodic renormalization of the quaternion using
Eq. (97) provides a computationally efécient means for control-
ling the orthogonality error, it does not control the drift error. In
fact, for higher-order algorithms, it does nothing whatsoever to re-
duce the total error. In Figs. 3–6, the points that correspond to a
Corbett–Wright39 gain coefécient of zero were obtained using no
orthogonality control at all. In each case, the total error obtained
with no orthogonality control was the same as that obtained when
the quaternion was renormalized after each time step. From this,
one may be tempted to conclude that there is no value in orthogo-
nality control. This is not exactly true. If the orthogonality error is
controlled, a small amount of drift error does not adversely affect
a èight simulator because it is constantly being corrected with vir-
tually imperceptible pilot input. The pilot’s perception of the drift
error is similar to that caused by an inénitesimal change in the aero-
dynamics of the aircraft.The orthogonalityerror, on the other hand,
has no counterpart in the physical world and cannot be compen-
sated for by the pilot.When the quaternionmagnitudedeviatesfrom
unity, transformations obtained from Eq. (25) or Eq. (40) become
nonorthogonal,and vector length is not preserved through the trans-
formation. Because rotation is an orthogonal transformation, large
orthogonalityerrorscan causephysicallyunrealisticdistortionin the
kinematic transformations.For large time-step simulations with no
orthogonalitycontrol, these transformationdistortionswill continue
to increase with time, unaffected by pilot input.

To demonstrate the effects of both orthogonality error and drift
error on the visual display, Fig. 7 shows a three-dimensional im-
age displayed after four different quaternion simulations. Each of
the four simulations was carried out using fourth-order Adams–

Bashforth–Moulton numerical integration. In each case, all aspects
of the integration, except the error control, were the same. All four
images are viewed from exactly the same position and with exactly
the same perspective. The differences in the images result entirely
from numerical integrationerrors in the transformationquaternion.

The image in Fig. 7a is essentially error free. The orthogonality
errorwas removedusingperiodicrenormalization,and thedrift error
was eliminated with pilot input. The darker image in Fig. 7b was
generated using periodic renormalization without pilot input and
thus contains no orthogonalityerror but about 17 deg of drift error.
To emphasize the error, this image has been overlaidon an error-free
image in light gray. The integrationused to obtain the darker image

a) c)

b) d)

Fig. 7 Effects of drift error and orthogonality error on the visual
display after 2 £ 106 iterations using fourth-order Adams–Bashforth–

Moulton with a) periodic renormalization, no orthogonality error, and
drift error eliminated by pilot; b) periodic renormalization, no orthog-
onality error, and 17-deg drift error; c) no orthogonality control, 8%
orthogonality error, and 17-deg drift error; d) no orthogonalitycontrol,
8% orthogonality error, and drift error eliminated by pilot.

Fig. 8 Effect of step size on the accuracy of a fourth-order Runge–

Kutta algorithm with no orthogonality control, using single-precision
computations.

in Fig. 7c had no orthogonality control or pilot input and produced
about 8% orthogonalityerror and about 17 deg of drift error. Again,
the light gray image in Fig. 7c is error free. When Figs. 7b and 7c are
compared, it can be seen that orthogonalityerror producesa scaling
distortion in the visual display. As is seen in Fig. 7d, pilot input
eliminates the drift error but does nothing to eliminate the scaling
distortioncaused by the orthogonalityerror. It can readily be shown
from Eq. (40) that, when orthogonality error is present, all objects
in the visual display are scaled by a factor of jej2.

Because the orthogonalityerror is onlya small fractionof the total
error, reducing the size of the time step and/or increasing the order
of the numerical integrationalgorithmare the only effectiveways to
reduce total error. The effects of time-step size on the orthogonality
error and the total error, for a fourth-order Runge–Kutta algorithm
with no orthogonalitycontrol, are shown in Figs. 8 and 9, for both
single- and double-precisioncomputations. Figures 8 and 9 show a
common misconception concerning the origin of the orthogonality
error, which is often attributed to the roundoff error associatedwith
the énite word size used for numerical computation.165 As can be
seen by comparing Fig. 8 with Fig. 9, neither the orthogonality er-
ror nor the total error is signiécantly affected by the computation
precision for a large step size. Furthermore, for a step size of less
than about 5 deg, the single-precisionorthogonalityerror is exactly
zero, whereas the double-precisionorthogonalityerror is very small
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Fig. 9 Effect of step size on the accuracy of a fourth-order Runge–

Kutta algorithm with no orthogonality control, using double-precision
computations.

Fig. 10 Effect of changing the gain coefécient on the accuracy of a
second-order Runge–Kutta algorithm using Corbett–Wright orthogo-
nality control.

but énite. This is because orthogonality error does not result from
the roundoff error associated with word size and computation pre-
cision. It is rather the result of errors associated with the order of
the integration algorithm. This numerical integrationerror is called
truncation error because it results from truncating the Taylor series
for differentiation to a énite number of terms.

In an aircraft èight simulation, computing the time deriva-
tives of the translational and angular velocity components requires
computationof theaerodynamicforcesandmoments.Dependingon
the method used, these computations can be quite time consuming.
Because a digital simulation using the fourth-order Runge–Kutta
algorithm requires evaluating these time derivatives four times for
each time step, érst-order and second-order integration methods
have occasionally been used in an attempt to reduce computation
time.As shallbedemonstrated,this is not a particularlygoodchoice.

Results from a second-order Runge–Kutta integration with
Corbett–Wright39 orthogonalitycontrolare shown in Fig. 10.Notice
that, as was the case for fourth-order integration, Corbett–Wright
orthogonalitycontroloffersno reductionin total simulationerror for
this second-order integration. Furthermore, for the time step used,
the accuracy of this second-ordersimulation is not signiécantly im-
proved over that of the érst-order simulation shown in Fig. 2. At
érst thought, this may seem counterintuitive.

From the theory of numerical methods we know that, in the limit
as the stepsizeapproacheszero, theglobalerror for theérst-orderin-
tegrationshouldbe linearlyproportionalto the step size, whereas the
global error for the second-orderintegration should be proportional
to the step size squared. For very small step size, this is conérmed
in Fig. 11. However, for larger step size, the global error results
primarily from the higher-order terms, which have been neglected
in both the érst- and second-order algorithms. Thus, for larger time
steps, the second-order algorithm offers little increase in accuracy
over the érst-order algorithm. This can be seen in Fig. 12.

Fig. 11 Comparisonbetween érst-order Euler integrationandsecond-
order Runge–Kutta integration for small time steps.

Fig. 12 Comparisonbetween érst-order Euler integrationandsecond-
order Runge–Kutta integration for large time steps.

When digital computers érst became practical for aircraft èight
simulation, new integration algorithms were developed in an at-
tempt to reduce computation time without sacriécing accuracy. In
1963, Pope166 proposed one such algorithm, which was called the
exponential method. This algorithm was érst used to integrate the
quaternion formulation at the NASA Langley Research Center in
1973.167 In the aircraftcommunity, the method is commonly known
as the local linearizationmethod. Because the methodhas beenused
in aircraftèight simulationfor many yearsbut is not commonlyused
elsewhere, a development of this algorithm will be presented here.

The differential equations governing the change in the compo-
nents of the quaternion e with time are given by Eq. (32). This
system of differential equations written in matrix notation is

Pe D [M]e (98)

where

[M] D 1
2

0 ¡p ¡q ¡r
p 0 r ¡q
q ¡r 0 p
r q ¡p 0

(99)

The right-hand side of Eq. (98) can be expanded in a Taylor series
about t D ti and e D ei

Pe D [M]i ei C [M]i .e ¡ ei / C [ PM]i ei .t ¡ ti /

C .1=2!/ 2[ PM]i .e ¡ ei /.t ¡ ti / C [ RM]i ei .t ¡ ti /2

C .1=3!/ 3[ RM]i .e ¡ ei /.t ¡ ti /2 C [ RM]i ei .t ¡ ti /3 C ¢ ¢ ¢
(100)

where the subscript i indicates evaluation at time t D ti .
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Equation (100) forms the basis for the local linearization algo-
rithms that have been used to integrate the quaternion formulation.
These algorithms are based on the method proposed by Pope,166

which was originallycalled the exponentialmethod.Barker et al.167

érst applied this method to the quaternion formulation using a érst-
order approximation to Eq. (100),

Pe ªD [M]i ei C [M]i .e ¡ ei / C [ PM]i ei .t ¡ ti / (101)

In an attempt to improve the local linearization algorithm, Yen and
Cook168 used the approximation

Pe ªD [M]i ei C [M]i .e ¡ ei / C [ PM]i ei .t ¡ ti / C [ PM]i [M]i ei .t ¡ ti /2

(102)

Equation (102) includes an approximation for the second term on
the right-hand side of Eq. (100). Within the second term, this ap-
proximation implies

.e ¡ ei / ªD Pei .t ¡ ti / D [M]i ei .t ¡ ti /

and

[ RM] ªD 0

Because Eq. (102) completely ignores that portion of the second-
order term fromEq. (100) that contains[M̈], in general,this equation
should not be expected to give higher-orderaccuracythan Eq. (101).
This was conérmed by the numerical results of Yen and Cook.168

From Eqs. (99) and (100), we see that a full second-orderapproxi-
mation for the right-handsideof Eq. (100) would requireknowledge
of the second derivativeof the angular rate vector. Althoughthe érst
derivative of the angular rate vector is always available from the
equations of motion, its second derivative is not directly available
in a six-DOF èight simulation. For this reason, a complete second-
order approximationto the right-handside of Eq. (100) has not been
used. Because the approximation given by Eq. (102) is no more ac-
curate than that given by Eq. (101), only the local linearization
algorithm based on Eq. (101) will be presented here.

The local linearizationalgorithmof Barker et al.167 has been used
in aircraft èight simulation for many years. This algorithm is based
on the closed-form solution to Eq. (101),

ei C 1 D [exp.[M]i ±t/]ei C f[exp.[M]i ±t/] ¡ [I]

¡ [M]i ±tg[M]¡1
i [M]¡1

i [ PM]i ei (103)

where ±t D ti C 1 ¡ ti . Applying Eq. (87) to replace the matrix expo-
nential in Eq. (103) gives

ei C 1 D cos.!i ±t=2/ei C .2=!i / sin.!i ±t=2/[M]i ei

C [cos.!i ±t=2/ ¡ 1][M]¡1
i [M]¡1

i [ PM]i ei C [.2=!1/ sin.!i ±t=2/

¡ ±t ][M]i [M]¡1
i [M]¡1

i [ PM]i ei (104)

From Eq. (99), it is readily shown that the inverse of [M] is

[M]¡1 D ¡.4=!2/[M] (105)

and

[M]¡1[M]¡1 D ¡.4=!2/[M][M]¡1 D ¡.4=!2/[I] (106)

Thus, when Eq. (106) is used in Eq. (104), the local linearization
algorithm can be written as

ei C 1 D cos.!i ±t=2/ei C .2=!i / sin.!i ±t=2/[M]i ei

C 4 !2
i [1 ¡ cos.!i ±t=2/][ PM]i ei

C 4 !2
i [±t ¡ .2=!i / sin.!i ±t=2/][M]i [ PM]i ei (107)

Notice that, for the special case where [M] is constant, Eq. (107)
reduces to the exact solution given by Eq. (88).

Also note that Eq. (107) is numerically indeterminate for the
special case when !i is zero. However, when the series expansion
is used for the sine and the cosine, it is readily shown that when !i

is zero Eq. (107) reduces to

ei C 1 D
!i ! 0

ei C ±t [M]i ei C .±t 2=2/[ PM]i ei C .±t 3=6/[M]i [ PM]i ei

(108)

Furthermore, from Eq. (99) we see that when !i is zero, all 16
components of [M] are also zero. Thus, even though Eq. (108) is
not numerically indeterminate, it can be simpliéed to give

ei C 1 D
!i ! 0

ei C .±t2=2/[ PM]i ei (109)

Equations (107) and (109) provide the foundation for the local lin-
earization algorithm.

The order of the truncation error associated with the local lin-
earization algorithm can be evaluated by using the Taylor series
expansion, which is deéned in Eq. (85), for the matrix exponential
in Eq. (103). This gives

ei C 1 D [I] C [M]i ±t C [M]i [M]i ±t 2 2! C ¢ ¢ ¢ ei

C [M]i [M]i ±t 2 2! C ¢ ¢ ¢ [M]¡1
i [M]¡1

i [ PM]i ei

or

ei C 1 D ei C [M]i ei ±t C f.[M]i [M]i C [ PM]i /=2!gei ±t 2

C f.[M]i [M]i [M]i C [M]i [ PM]i /=3!gei ±t 3 C ¢ ¢ ¢ (110)

The Taylor series expansion of the exact solution is

ei C 1 D ei C Pei ±t C . Rei=2!/±t2 C .PRei =3!/±t3 C ¢ ¢ ¢ (111)

From Eq. (98) we have

Pei D [M]i ei (112)

Rei D [M]i Pei C [ PM]i ei D f[M]i [M]i C [ PM]i gei (113)

PRei D [M]i Rei C 2[ PM]i Pei C [ RM]i ei D f[M]i [M]i [M]i C [M]i [ PM]i

C 2[ PM]i [M]i C [ RM]i gei (114)

Using Eqs. (112–114) in Eq. (111) gives

ei C 1 D ei C [M]i ei ±t C f.[M]i [M]i C [ PM]i /=2!gei ±t 2

C f.[M]i [M]i [M]i C [M]i [ PM]i

C 2[ PM]i [M]i C [ RM]i /=3!gei ±t3 C ¢ ¢ ¢ (115)

When the exact expansion from Eq. (115) is compared with the ex-
pansionof the local linearizationalgorithmthat is givenbyEq. (110),
the local truncation error for this algorithm is found to be

Ri D f.2[ PM]i [M]i C [ RM]i /=3!gei ±t 3 C O.±t 4/ C ¢ ¢ ¢ (116)

Thus, the method produces third-order truncation error with com-
ponents proportional to both the érst and second derivatives of the
angular rate vector. It does not provide an exact solution, except for
the special case of constant rotation.Because the truncationerror is
of order ±t 3, the local linearization method provides second-order
accuracy in a single-point, single-step, integration algorithm.

A more widely known integration method, which was also de-
veloped to reduce computation time over that required for fourth-
order Runge–Kutta, is fourth-order Adams–Bashforth–Moulton
(seeRef. 161). This commonlyusednumericalintegrationscheme is
a four-point, two-step, backward-differencemethod. Because four
starting values are required, the method must be started using a
single-point method such as fourth-order Runge–Kutta. However,
after the érst three time steps, this method requires evaluating the
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Fig. 13 Comparison between second-order Runge–Kutta, second-
order local linearization, fourth-order Runge–Kutta, and fourth-order
Adams–Bashforth–Moulton integration.

time derivativesonly twice for each time step. This provides fourth-
order accuracy similar to that provided by fourth-order Runge–

Kutta,but at a computationalcost similar to that requiredfor second-
order Runge–Kutta. Because the development of the fourth-order
Adams–Bashforth–Moulton algorithm is presented in most under-
graduate textbooks on numerical methods, it will not be repeated
here.

In general, simulation error can be reduced by either reducing
the size of the time step or by increasing the order of the inte-
gration method. Both require greater computation time. Figure 13
shows how total error varies with step size for four different inte-
gration algorithms, second-order Runge–Kutta, second-order local
linearization, fourth-order Runge–Kutta, and fourth-order Adams–

Bashforth–Moulton. The results shown in Fig. 13 were obtained
from numerical integration of the quaternion formulation for the
special case of a sinusoidal rotation vector,

p
q
r

D
!ax sin.! f x t/
!ay sin.! f y t/
!az sin.! f z t/

The error was deéned relative to a fourth-order Runge–Kutta solu-
tion using very small time steps. As expected,the fourth-orderalgo-
rithms produce less error for a given time step than do the second-
order algorithms.However, the higher-orderalgorithmsalso require
a greater number of computation cycles for each time step. For this
reason, it may not be directly obvious which of the four methods
will result in the fastest computation for a given level of accuracy.

The second-order local linearization algorithm requires only one
cycle of computation for the aerodynamic forces and moments at
each time-step. The second-order Runge–Kutta algorithm and the
fourth-order Adams–Bashforth–Moulton algorithm each requires
two computation cycles per time step, whereas the fourth-order
Runge–Kutta algorithmrequires four. For the same simulations that
were used to produceFig. 13, the number of computationcycles per
simulated second are shown as a function of step size in Fig. 14.

Because computation time depends on the method of integration
as well as the step size, Fig. 13 does not present a fair comparison
of the error produced by the four algorithms. Because computation
time is proportional to the number of computation cycles per simu-
lated second, a better comparison is shown in Fig. 15. In Fig. 15, the
total simulation error is plotted as a functionof the number of com-
putation cycles per simulated second. From Fig. 15, it is seen that
fourth-order Adams–Bashforth–Moulton produces the smallest er-
ror for a given level of computation.Furthermore, it can be seen that
a simulationusing fourth-orderRunge–Kutta is only slightly less ef-
écient than one using fourth-order Adams–Bashforth–Moulton. In
addition, Fig. 15 shows that the second-order algorithms are much
less efécient than either of the fourth-order algorithms. These low-
order algorithms should not be used, unless for some other reason

Fig. 14 Computationcycles per simulated second as a function of step
size for four numerical integration algorithms.

Fig. 15 Simulation error as a function of computation cycles per sim-
ulated second for four numerical integration algorithms.

very small time steps are required. The maximum total error shown
in Figs. 13 and 15 was computed using

!ax D !ay D !az D ! f x D ! f y D ! f z D 1:0 rad=s

The absolute magnitude of the error shown in Figs. 13 and 15
depends on the angular rates. However, the relative comparison be-
tween the errors realized by the four different numerical methods is
independent of these angular rates.

Conclusions
Among some fraction of the aircraft community, the quaternion

formulation has gained the somewhat undeserved reputation of be-
ing hard to understand. This reputation has more to do with the
scatterednature of the literatureon this topic, particularlyin aircraft
journals and textbooks, than it does with the raw complexity of
the quaternion formulation itself. Information from over 160 refer-
ences, pertinent to attitudekinematics,was assembled in an attempt
to provide a clearerunderstandingof the quaternionformulation.To
this end, a systematic developmentof the kinematic transformation
equations in terms of Euler angles, direction cosines, the Euler axis
rotation parameters, and the Euler–Rodrigues quaternion was pre-
sented. The kinematic equations, including the gravitational vector
and the effects of wind were presented for these four attitude repre-
sentations.The singularities in the both the Euler angle formulation
and the Euler axis formulationwere discussed.Because the physical
interpretationof the Euler–Rodrigues quaternion is much less intu-
itive than that associated with Euler angles, relationships between
the quaternion and the other attitude descriptorswere presented.

To avoid the perceivedcomplexityof the quaternionformulation,
the aircraft community has often implemented either the direction-
cosine formulation or the Euler angle formulation for attitude de-
scription in aircraft èight simulators. This has been done at signif-
icant computational cost. In addition to eliminating the singularity
in the Euler angle formulation, the quaternion formulation is far
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superior to either the Euler angle formulationor the direction-cosine
formulation, based on computational eféciency alone. Numerical
integration of the nine component direction-cosine formulation re-
quires more than double the computation time needed for the four-
component quaternion formulation.Utilizing quaternion algebra, it
was shown that the Euler angle transformation requires about 11
times as long to evaluate as the quaternion transformation. Conse-
quently,even in cases where the aircraft is not an all-attitudevehicle
and the gimbal lock singularity is not encountered, the quaternion
formulation provides important computational savings that should
be seriously considered.

To take full advantage of the speed and accuracy of the Euler–
Rodrigues quaternionformulation, it is necessary to give some con-
sideration to the numerical method used to integrate the kinematic
equations.Early aircraft èight simulationswere run on analog com-
puters that were inherently érst order. Numerical integration of the
quaternion rate equations with a érst-order method results in very
large errors. Early analog programmers observed a similar behav-
ior and employed an error reduction scheme, which in this paper
is called Corbett–Wright39 orthogonality control. This orthogonal-
ity control is still found in some aircraft simulation codes that are
in use today. Integration with any of today’s prevalent fourth-order
numerical methods produces very little orthogonality error. Using
the Corbett–Wright orthogonalitycontrol scheme with modern nu-
merical algorithms increases the computational time but does little
to improve the accuracy of the simulation.

Even though the orthogonalityerror for modern numerical algo-
rithms is very small, it can accumulate. Periodic renormalizationof
the quaternion eliminates this error. The Corbett–Wright39 orthog-
onality control scheme will also eliminate the growth of the orthog-
onality error, but it does not eliminate the drift error. In some cases,
for certain values of the Corbett–Wright gain coefécient, the drift
error is increased by more than the orthogonality error is reduced,
which actually increases the total error for the simulation. Periodic
renormalization of the quaternion provides a computationally efé-
cient means for controlling orthogonality error without increasing
thedrift error,but it doesnot eliminatedrift error. If theorthogonality
error is controlled, a small amount of drift error does not adversely
affect a èight simulator becauseit is constantlybeingcorrectedwith
virtuallyimperceptiblepilot input.The pilot’s perceptionof the drift
error is similar to that caused by an inénitesimal change in the aero-
dynamics of the aircraft.The orthogonalityerror, on the other hand,
has no counterpartin the physicalworld and cannotbe compensated
for by the pilot. Reduction in size of the time step and/or increasing
the order of the integration are the only effective ways to reduce
total error.
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Errata
Review of Attitude Representations Used for Aircraft Kinematics

W. F. Phillips and C. E. Hailey
Utah State University, Logan, Utah 84322-4130

and
G. A. Gebert

Sverdrup Technology, Inc., Eglin Air Force Base, Florida 32542

[J. Aircraft, 38(4), pp. 718–737 (2001)]

T

YPESETTING errors occur in Eqs. (1), (2), (3), (4), (24), (25),
(34), (41), (46), (49), (50), (52), (100), and (104). For the cor-

rect version of these equations see Phillips, Hailey, and Gebert.1;2

Speciécally, the errors that have been identiéed are:
1. The left-hand side of the second line of Eq. (1) should be

£

8
<

:

vx

vy

vz

9
=

; D rather than

8
<

:

vx

vy

vz

9
=

; D.

2. The term in the secondrow and the secondcolumnof the matrix
on the right-hand side of Eq. (1) should be SÁ Sµ SÃ C CÁCÃ rather
than SÁ Sµ CÃ C CÁCÃ .

3. The term in the secondrow and the secondcolumnof the matrix
on the right-hand side of Eq. (2) should be SÁ Sµ SÃ C CÁCÃ rather
than SÁ Sµ CÃ C CÁCÃ .

4. The term in the secondrow and the secondcolumnof the matrix
on the right-hand side of Eq. (3) should be SÁ Sµ SÃ C CÁCÃ rather
than SÁ Sµ CÃ C CÁCÃ .

5. The term in the secondrow and the secondcolumnof the matrix
on the right-hand side of Eq. (4) should be SÁ Sµ SÃ C CÁCÃ rather
than SÁ Sµ CÃ C CÁCÃ .

6. The term in the second row and the third column of the matrix
on the right-hand side of Eq. (24) should be Eyz C 2Ex SC rather
than Eyz ¡ 2Ex SC .

7. The term in the érst row and the third column of the matrix on
the right-hand side of Eq. (25) should be 2.ex ez ¡ eye0/ rather than
2.ex ez C ey e0/.

8. The term in the third row and the érst column of the matrix on
the right-hand side of Eq. (25) should be 2.ex ez C eye0/ rather than
2.ex ez ¡ ey e0/.

Wake Forces Implied in the Theodorsen and Goldstein

Theories of Propellers

Herbert S. Ribner
University of Toronto, Ontario, Canada L3T 5W1

[J. Aircraft, 35(6), pp. 930–935 (1998)]

T

HE title of the reference should be revised by the addition of
the adjective“Spurious”so that it reads “SpuriousWake Forces

Implied in the Theodorsen and Goldstein Theories of Propellers.” It
is belatedly realized that the present title, abstract, and early portion
of the text are ambiguous in the meaningof the word “correction.”It
is well down on the second pagebefore the clariécation: “The thrust
on the wake extension is thus a false contribution” (italics added).
Then, at the top of p. 31, “Indeed, one can model the propeller
as having a rigid helicoidal extension: : : . The propeller plus rigid

helicoidal extension is clearly an artiéce.” Thus the “corrections”
subtract the spurious contribution of the implied (but nonexistent)
rigid wake from the thrust and torque calculated via the cited theo-
ries. This is made explicit in Eq. (19).

Reference

Ribner, H. S., “Wake Forces Implied in the Theodorsen and Goldstein
Theories of Propellers,” Journal of Aircraft, Vol. 35, No. 6, 1998, pp. 930–
935.

9. The third deénition in the third line of Eq. (34) should be
*

i z ≠ *

i z ´ ¡1 rather than
*

i y ≠ *

i z ´ ¡1.
10. The y-component of the quaternion on the right-hand side

of Eq. (41) should be .¡vx ez C vye0 C vzex / rather than .¡vx ez C
vye0 C vzez/.

11. The z-component of the quaternion on the right-hand side of
Eq. (41) should be .vx ey ¡ vy ex C vze0/ rather than .vx ey C vy ex C
vze0/.

12. The term in the second row and the second column of the
matrix on the right-hand side of Eq. (46) should be SÁ Sµ SÃ CCÁCÃ

rather than SÁ Sµ CÃ C CÁCÃ .
13. The last component on the right-hand side of Eq. (49) should

be .SÁ=2Sµ =2CÃ=2 ¡ CÁ=2Cµ=2SÃ=2/2 rather than .SÁ=2Sµ=2CÃ=2 C
CÁ=2Cµ=2SÃ=2/2.

14. The érst componenton the right-hand side of Eq. (50) should
be Cµ SÃ rather than Cµ CÃ .

15. The second component on the right-hand side of Eq. (50)
should be SÁ Sµ CÃ ¡ CÁ SÃ rather than SÁ Sµ SÃ ¡ CÁ SÃ .

16. The last componenton the left-handside of Eq. (52) shouldbe
sy sz.¡SÁCµ ¡ CÁ Sµ SÃ C SÁCÃ / rather thansy sz.¡SÁCµ C CÁ Sµ SÃ

C SÁCÃ /.
17. The last term in the brackets in the last line on the right-hand

side of Eq. (100) shouldbe [ PPPM]i ei .t ¡ ti /3 rather than [ RM]i ei .t ¡ti /3.
18. The last term in the second line of Eq. (104) should be

[.2=!i / sin.!i ±t=2/ rather than [.2=!1/ sin.!i ±t=2/.
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