next up previous
Next: Examples Up: transmission_line Previous: Reflection and termination

Forward and backward traveling signals

Summarizing the above, we have two simultaneous equations of two unknowns $V_b=V_B(0)$ and $V_f=V_F(0)$ for the forward and backward voltages at the front end ($x=0$):

\begin{displaymath}\left\{ \begin{array}{ll}
V_f=AV_0+\eta_1V_b & \mbox{(at fron...
...{-j\omega T} & \mbox{(at back end $x=l$)}
\end{array} \right. \end{displaymath}

Solving these simultaneous equations we get

\begin{displaymath}V_f=\frac{AV_0}{1-\eta_1\eta_2e^{-2j\omega T}},\;\;\;\;\;\;\;...
...T}}{1-\eta_1\eta_2e^{-2j\omega T}}
=\eta_2e^{-2j\omega T} V_f
\end{displaymath}

The numerators represent the sources of the signals. The forward signal $V_f=V_F(0)$ is caused by the input $AV_0$ first entering the line at $t=0$. The backward signal $V_b=V_B(0)$ is due to the forward signal reflected at the back end of the line ($\eta_2$), delayed by the round-trip traveling time $2T$ ( $e^{-j2\omega T}$) for the signal to travel forward and then backward along the length of the line. The common denominator represents the subsequent reflections at both ends. As in general $\vert\eta_1\vert<1$ and $\vert\eta_2\vert<1$, we have $\vert\eta_1\eta_2e^{-2j\omega T}\vert<1$ and the denominator can be expanded to become:

\begin{displaymath}\frac{1}{1-\eta_1\eta_2e^{-2j\omega T}}=1+\eta_1\eta_2e^{-2j\...
...ta_2e^{-2j\omega T})^2+(\eta_1\eta_2e^{-2j\omega T})^3+\cdots
\end{displaymath}

Here the general term $(\eta_1\eta_2)^ke^{-2kj\omega T}$ represents the signal arriving at the front of the line after traveling forward and backward along the line and being reflected at both ends $k$ times ( $k=0,1,2,\cdots$). When $\eta_1\ne 0$ and $\eta_2\ne 0$, there will be infinite reflections between the two ends.

Given $V_f$ and $V_b$, the voltages $V(0)=V_1$ and $V(l)=V_2$ at the two ends. At the front, we have

\begin{displaymath}V_1=V_b+V_f=\frac{A(1+\eta_2e^{-2j\omega T})}{1-\eta_1\eta_2e^{-2j\omega T}}V_0 = T_1V_0 \end{displaymath}

where $T_1$ is the voltage transfer function at the front defined as

\begin{displaymath}T_1\stackrel{\triangle}{=}\frac{A(1+\eta_2e^{-2j\omega T})}{1-\eta_1\eta_2e^{-2j\omega T}} \end{displaymath}

The two terms of the numerator correspond to the in-coming voltage and the reflection from the back end, respectively. The input current is

\begin{displaymath}I_1=I_b+I_f=\frac{-V_b+V_f}{Z_0}
=\frac{A(1-\eta_2e^{-2j\omega T})}{1-\eta_1\eta_2e^{-2j\omega T}} \frac{V_0}{Z_0} \end{displaymath}

The input impedance of the transmission line can be obtained as:

\begin{displaymath}Z_{in}\stackrel{\triangle}{=}\frac{V_1}{I_1}=\frac{1+\eta_2e^{-2j\omega T}}{1-\eta_2e^{-2j\omega T}}
Z_0 \end{displaymath}

At the back end, we have

\begin{displaymath}V_2=V_be^{j\omega T}+V_fe^{-j\omega T}
=\frac{A(1+\eta_2)e^{-j\omega T}}{1-\eta_1\eta_2e^{-2j\omega T}}V_0 = T_2V_0 \end{displaymath}

where $T_2$ is the voltage transfer function at the back end defined as

\begin{displaymath}T_2\stackrel{\triangle}{=}\frac{A(1+\eta_2)e^{-j\omega T}}{1-\eta_1\eta_2e^{-2j\omega T}} \end{displaymath}

The two terms of the numerator correspond to the in-coming voltage arriving at the back end after a time dealy of $T$ and the immediate reflection at the back end. The output current is

\begin{displaymath}I_2=I_be^{j\omega T}+I_fe^{-j\omega T}=\frac{-V_be^{j\omega T...
...e^{-j\omega T}}{1-\eta_1\eta_2e^{-2j\omega T}} \frac{V_0}{Z_0} \end{displaymath}

We can easily verify that indeed $V_2/I_2=Z_2$:

\begin{displaymath}\frac{V_2}{I_2}=\frac{1+\eta_2}{1-\eta_2}Z_0=Z_2 \end{displaymath}

The output impedance of the transmission line can be defined as the ratio of the open-circuit voltage $V_2$ (when $Z_2=\infty$, $\eta_2=1$) and the short-circuit current $I_2$ (when $Z_2=0$, $\eta_2=-1$). But as

\begin{displaymath}V_{2oc}=V_2\big\vert _{Z_2=\infty}=\frac{2Ae^{-j\omega T}}{1-...
...frac{2Ae^{-j\omega T}}{1+\eta_1e^{-2j\omega T}}\frac{V_0}{Z_0}
\end{displaymath}

we get

\begin{displaymath}Z_{out}\stackrel{\triangle}{=}\frac{V_{2oc}}{I_{2sc}}
=\frac{1-\eta_2e^{-2j\omega T}}{1+\eta_2e^{-2j\omega T}} Z_0 \end{displaymath}

TransmissionLine2.gif

We consider some special cases.

In summary, we have:


next up previous
Next: Examples Up: transmission_line Previous: Reflection and termination
Ruye Wang 2016-05-20