next up previous
Next: About this document ...

  • RC first-order system with zero input (homogeneous):

    Taking the unilateral Laplace transform of the original DE:

      $\displaystyle \tau\frac{d}{dt} v_c(t)+v_c(t)=0
$ (1)
    we get
      $\displaystyle {\cal L}\left[\tau\frac{d}{dt} v_c(t)+v_c(t)\right]
=\tau [s V_c(s)-V_0]+V_c(s)=V_c(s)(s\tau +1)-\tau V_0=0
$ (2)
    Here we have used the property ${\cal L}(dx/dt)=s X(s)-x(0)$, where $x(0)=\lim_{t\rightarrow 0}x(t)$ is the initial condition. Solving for $V_c(s)$ we get
      $\displaystyle V_c(s)=\frac{\tau V_0}{s\tau+1}=\frac{V_0}{s+1/\tau}
$ (3)
    The time domain voltage is the inverse transform:
      $\displaystyle v_c(t)={\cal L}^{-1}\left[\frac{V_0}{s+1/\tau}\right]=V_0 e^{-t/\tau}
$ (4)

  • RC first-order system with constant input:

    Taking the unilateral Laplace transform of the original DE:

      $\displaystyle \tau\frac{d}{dt} v_c(t)+v_c(t)=v_s(t)=V_s\,u(t)
$ (5)
    we get
      $\displaystyle {\cal L}\left[\tau\frac{d}{dt} v_c(t)+v_c(t)\right]
=\tau [s V_c(s)-V_0] + V_c(s)={\cal L} \left[ V_s\,u(t) \right]=\frac{V_s}{s}
$ (6)
    Solving for $V_c(s)$, we get
      $\displaystyle V_c(s)=\frac{V_s}{s(s\tau+1)}+\frac{\tau V_0}{s\tau+1}
=V_s\left(\frac{1}{s}-\frac{\tau}{s\tau+1}\right)+\frac{\tau V_0}{s\tau+1}
$ (7)
    Taking the inverse Laplace trannsform we get the solution of the DE in time domain:
      $\displaystyle v_c(t)={\cal L}^{-1}\left[V_c(s)\right]=V_s-V_s e^{-t/\tau}+V_0e^{-t/\tau}
=V_s+(V_0-V_s)e^{-t/\tau}
$ (8)
    To find the steady state solution, we can use the final-value theorem:
      $\displaystyle \lim_{t\rightarrow\infty}v_c(t)=\lim_{s\rightarrow 0} s V_c(s)
=...
...rightarrow 0} \left[\frac{V_s}{(s\tau+1)}+\frac{\tau sV_0}{s\tau+1}\right]=V_s
$ (9)

  • RC first-order system with sinusoidal input:

    First consider a complex input $V_s e^{j\omega t}\,u(t)=V_s(\cos\omega t+j\sin\omega t)u(t)$ on the right-hand side:

      $\displaystyle \tau\frac{d}{dt} v_c(t)+v_c(t)=V_s \cos(\omega t)=V_s e^{j\omega t}\,u(t)
$ (10)
    Taking the transform on both sides, we get
      $\displaystyle {\cal L}\left[\tau\frac{d}{dt} v_c(t)+v_c(t)\right]
=s\tau V_c(s...
...u V_0+V_c(s)={\cal L}\left[V_s\,e^{j\omega t}u(t)\right]=\frac{V_s}{s-j\omega}
$ (11)
    Solving for $V_c(s)$, we get
      $\displaystyle V_c(s)=\frac{1}{s\tau+1}\left(\frac{V_s}{s-j\omega}+\tau V_0\righ...
...\left(\frac{1}{s-j\omega}-\frac{1}{s+1/\tau}\right)
+\frac{\tau V_0}{s\tau+1}
$ (12)
    Taking the inverse Laplace trannsform we get the solution of the DE in time domain:
    $\displaystyle v_c(t)$ $\textstyle =$ $\displaystyle {\cal L}^{-1}\left[V_c(s)\right]
=\frac{V_s}{j\omega\tau+1}\left[...
...1}{s+1/\tau}\right)\right]+{\cal L}^{-1}\left( \frac{\tau V_0}{s\tau+1} \right)$  
      $\textstyle =$ $\displaystyle \frac{V_se^{-j\phi}}{\sqrt{\omega^2\tau^2+1}}\left[e^{j\omega t}-...
...phi)}
-\frac{V_se^{-j\phi}}{\sqrt{\omega^2\tau^2+1}}e^{-t/\tau}+V_0 e^{-t/\tau}$  

    Taking the real part we get the solution:
    $\displaystyle v_c(t)$ $\textstyle =$ $\displaystyle \frac{V_s}{\sqrt{\omega^2\tau^2+1}}\cos(\omega t-\phi)
-\frac{V_se^{-t/\tau}}{\sqrt{\omega^2\tau^2+1}}\cos(-\phi)
+V_0 e^{-t/\tau}$  
      $\textstyle =$ $\displaystyle \frac{V_s}{\sqrt{\omega^2\tau^2+1}}\cos(\omega t-\phi)
+\left[V_0 -\frac{V_s}{\sqrt{\omega^2\tau^2+1}}\cos(-\phi)\right] e^{-t/\tau}$  



  • About this document ...

next up previous
Next: About this document ...